CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes. 2023

Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China.

Site-directed and saturation mutagenesis are critical DNA methodologies for studying protein structure and function. For plasmid-based gene mutation, PCR and overlap-extension PCR involve tedious cloning steps. When the plasmid size is large, PCR yield may be too low for cloning; and for saturation mutagenesis of a single codon, one experiment may not enough to generate all twenty coding variants. Oligo-mediated recombineering sidesteps the complicated cloning process by homologous recombination between a mutagenic oligo and its target site. However, the low recombineering efficiency and inability to select for the recombinant makes it necessary to screen a large number of clones. Herein, we describe two plasmid-based mutagenic strategies: CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis (CRM) and saturation mutagenesis (CRSM). CRM and CRSM involve co-electroporation of target plasmid, sgRNA expression plasmid and mutagenic oligonucleotide into Escherichia coli cells with induced expression of λ-Red recombinase and Cas9, followed by plasmid extraction and characterization. We established CRM and CRSM via ampicillin resistance gene repair and mutagenesis of N-acetyl‑D‑neuraminic acid aldolase. The mutational efficiency was between 80 and 100% and all twenty amino acid coding variants were obtained at a target site via a single CRSM strategy. CRM and CRSM have the potential to be general plasmid-based gene mutagenesis tools.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000072669 Gene Editing Genetic engineering or molecular biology techniques that involve DNA REPAIR mechanisms for incorporating site-specific modifications into a cell's genome. Base Editing,Genome Editing,Editing, Base,Editing, Gene,Editing, Genome
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D064113 CRISPR-Cas Systems Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS. CRISPR Cas Systems,CRISPR-Cas System,System, CRISPR-Cas,Systems, CRISPR-Cas

Related Publications

Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
September 2019, Microbial biotechnology,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
July 2020, ACS synthetic biology,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
October 2018, Bio-protocol,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
April 2019, Applied microbiology and biotechnology,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
March 2019, Applied microbiology and biotechnology,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
January 2014, Nucleic acids research,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
September 2023, Plant biotechnology (Tokyo, Japan),
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
January 2016, Scientific reports,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
January 2016, Journal of biological engineering,
Guoyi Zhang, and Junyu Wang, and Yiwen Li, and Guangdong Shang
June 2002, Analytical biochemistry,
Copied contents to your clipboard!