Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. 1987

S M Mische, and M S Mooseker, and J S Morrow
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510.

Adducin is an erythrocyte membrane skeletal phosphoprotein comprised of two related subunits of 105,000 and 100,000 Mr. These peptides form a functional heterodimer, and the smaller of the two binds calmodulin in a calcium-dependent fashion. Although this protein has been physicochemically characterized, its function remains unknown. We have examined the interaction of human adducin with actin and with human erythrocyte spectrin using sedimentation, electrophoretic, and morphologic techniques. Purified adducin binds actin at physiologic ionic strength and bundles it into arrays of laterally arranged filaments, the adducin forming cross-bridges between the filaments at 35.2 /- 3.8 (2 SD) nm intervals. The stoichiometry of high affinity adducin binding to actin at saturation is 1:7, corresponding to a dimer of adducin for every actin helical unit. Adducin also promotes the binding of spectrin to actin independently of protein 4.1. At saturation, each adducin promotes the association of one spectrin heterodimer. The formation of this ternary spectrin-actin-adducin complex is independent of the assembly path, and the complex exists in a readily reversible equilibrium with the free components. The binding of adducin to actin and its ability to stimulate spectrin-actin binding is down-regulated by calmodulin in a calcium-dependent fashion. These results thus identify a putative role for adducin, and define a calcium- and calmodulin-dependent mechanism whereby higher states of actin association and its interaction with spectrin in the erythrocyte may be controlled.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010750 Phosphoproteins Phosphoprotein
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D013049 Spectrin A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane. alpha-Spectrin,beta-Spectrin,alpha Spectrin,beta Spectrin

Related Publications

S M Mische, and M S Mooseker, and J S Morrow
January 1987, Nature,
S M Mische, and M S Mooseker, and J S Morrow
May 1987, The Journal of biological chemistry,
S M Mische, and M S Mooseker, and J S Morrow
November 1982, FEBS letters,
S M Mische, and M S Mooseker, and J S Morrow
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
S M Mische, and M S Mooseker, and J S Morrow
February 1984, Biochemistry international,
S M Mische, and M S Mooseker, and J S Morrow
February 2004, Cellular and molecular biology (Noisy-le-Grand, France),
S M Mische, and M S Mooseker, and J S Morrow
October 1986, The Journal of biological chemistry,
S M Mische, and M S Mooseker, and J S Morrow
April 1988, The Journal of biological chemistry,
S M Mische, and M S Mooseker, and J S Morrow
April 1986, Biochimica et biophysica acta,
S M Mische, and M S Mooseker, and J S Morrow
May 1989, The Journal of biological chemistry,
Copied contents to your clipboard!