Morphological features of layer V pyramidal neurons in the cat parietal cortex: an intracellular HRP study. 1987

T Yamamoto, and A Samejima, and H Oka
Department of Physiology, Fukui Medical School, Japan.

Layer V pyramidal neurons in the cat parietal cortex (areas 5 and 7) were investigated with intracellular HRP staining. Antidromic responses were recorded intracellularly as well as extracellularly with pontine stimulation under Nembutal anesthesia. The relationship between the latency of antidromic responses and the morphology of HRP-stained neurons was analyzed. A total of 65 neurons were stained with HRP, and sixteen of these neurons were activated antidromically with pontine stimulation. Two distinct groups of layer V pyramidal neurons were detected morphologically by intracellular HRP staining; i.e., one (F type) consisted of neurons with relatively large somata (58.4 +/- 8.1 micron X 24.5 +/- 5.1 micron, N = 11) and aspiny or sparsely spinous apical dendrites, and the other (S type) consisted of neurons with smaller somata (44.6 +/- 7.6 micron X 19.3 +/- 3.9 micron, N = 22) and richly spinous apical dendrites. These two groups showed different electrophysiological properties; i.e., the former responded antidromically to pontine stimulation at a latency shorter than 1.5 ms (namely, with a conduction velocity faster than 18 m/second) and the latter responded at a latency longer than 1.5 ms. The two neuronal types in the parietal cortex corresponded respectively to fast and slow pyramidal tract neurons (PTNs) investigated in the sensorimotor cortex. Although their morphological features were almost similar to those of PTNs, the branching pattern of apical dendrites of the F-type pyramidal neuron seemed to be different from that of fast PTNs. In the parietal cortex, apical dendrites of F-type neurons showed rather frequent branching in layer I. This was similar to the pattern of branching in slow PTNs. Such a characteristic branching pattern suggested that, in the cat parietal cortex, layer V pyramidal neurons of both types are adapted to receive cerebellar inputs through the ventroanterior (VA) thalamic nucleus to the superficial cortical layers.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females

Related Publications

T Yamamoto, and A Samejima, and H Oka
January 1986, Experimental brain research,
T Yamamoto, and A Samejima, and H Oka
November 1984, The Journal of comparative neurology,
T Yamamoto, and A Samejima, and H Oka
September 2012, Journal of neurophysiology,
T Yamamoto, and A Samejima, and H Oka
January 2002, Hippocampus,
Copied contents to your clipboard!