A proinsulin-dependent interaction between ENPL-1 and ASNA-1 in neurons is required to maintain insulin secretion in C. elegans. 2023

Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden.

Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053501 Arsenite Transporting ATPases Efflux pumps that use the energy of ATP hydrolysis to pump arsenite across a membrane. They are primarily found in prokaryotic organisms, where they play a role in protection against excess intracellular levels of arsenite ions. Arsenite-Transporting ATPase,Arsenite-Translocating ATPase,ATPase, Arsenite-Translocating,ATPase, Arsenite-Transporting,ATPases, Arsenite Transporting,Arsenite Translocating ATPase,Arsenite Transporting ATPase,Transporting ATPases, Arsenite
D018832 Molecular Chaperones A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures. Chaperones, Molecular,Chaperone, Molecular,Molecular Chaperone

Related Publications

Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
February 2007, Cell,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
January 2011, PloS one,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
June 2002, Journal of cell science,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
October 2023, Bio Systems,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
January 2013, PloS one,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
July 2014, Biochemical and biophysical research communications,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
September 2004, Journal of cell science,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
January 2013, PloS one,
Agnieszka Podraza-Farhanieh, and Dorota Raj, and Gautam Kao, and Peter Naredi
February 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!