Native functions of short tandem repeats. 2023

Shannon E Wright, and Peter K Todd
Department of Neurology, University of Michigan-Ann Arbor, Ann Arbor, United States.

Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.

UI MeSH Term Description Entries
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D018895 Microsatellite Repeats A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs). Microsatellite Markers,Pentanucleotide Repeats,Simple Repetitive Sequence,Tetranucleotide Repeats,Microsatellites,Short Tandem Repeats,Simple Sequence Repeats,Marker, Microsatellite,Markers, Microsatellite,Microsatellite,Microsatellite Marker,Microsatellite Repeat,Pentanucleotide Repeat,Repeat, Microsatellite,Repeat, Pentanucleotide,Repeat, Short Tandem,Repeat, Simple Sequence,Repeat, Tetranucleotide,Repeats, Microsatellite,Repeats, Pentanucleotide,Repeats, Short Tandem,Repeats, Simple Sequence,Repeats, Tetranucleotide,Repetitive Sequence, Simple,Repetitive Sequences, Simple,Sequence Repeat, Simple,Sequence Repeats, Simple,Sequence, Simple Repetitive,Sequences, Simple Repetitive,Short Tandem Repeat,Simple Repetitive Sequences,Simple Sequence Repeat,Tandem Repeat, Short,Tandem Repeats, Short,Tetranucleotide Repeat

Related Publications

Shannon E Wright, and Peter K Todd
November 2002, Biochemical and biophysical research communications,
Shannon E Wright, and Peter K Todd
November 2014, Genetics and molecular research : GMR,
Shannon E Wright, and Peter K Todd
January 2020, Nature methods,
Shannon E Wright, and Peter K Todd
January 2013, Methods in molecular biology (Clifton, N.J.),
Shannon E Wright, and Peter K Todd
August 1993, Human molecular genetics,
Shannon E Wright, and Peter K Todd
January 2010, Methods in molecular biology (Clifton, N.J.),
Shannon E Wright, and Peter K Todd
January 2005, Genome informatics. International Conference on Genome Informatics,
Shannon E Wright, and Peter K Todd
June 2017, Current opinion in genetics & development,
Shannon E Wright, and Peter K Todd
July 2003, Forensic science review,
Shannon E Wright, and Peter K Todd
April 1994, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Copied contents to your clipboard!