[Efficacy of noninvasive high-frequency oscillatory ventilation versus nasal intermittent positive pressure ventilation as post-extubation respiratory support in preterm infants: a Meta analysis]. 2023

Hong-Ke Shi, and Ke-Ling Liang, and Li-Hua An, and Bing Zhang, and Cheng-Yun Zhang
Department of Neonatology, First People's Hospital of Zhengzhou, Zhengzhou 450000, China.

OBJECTIVE To systematically evaluate the efficacy and safety of noninvasive high-frequency oscillatory ventilation (NHFOV) versus nasal intermittent positive pressure ventilation (NIPPV) as post-extubation respiratory support in preterm infants. METHODS China National Knowledge Infrastructure, Wanfang Data, Chinese Journal Full-text Database, China Biology Medicine disc, PubMed, Web of Science, and the Cochrane Library were searched for articles on NHFOV and NIPPV as post-extubation respiratory support in preterm infants published up to August 31, 2022. RevMan 5.4 software and Stata 17.0 software were used for a Meta analysis to compare related indices between the NHFOV and NIPPV groups, including reintubation rate within 72 hours after extubation, partial pressure of carbon dioxide (PCO2) at 6-24 hours after switch to noninvasive assisted ventilation, and the incidence rates of bronchopulmonary dysplasia (BPD), air leak, nasal damage, periventricular leukomalacia (PVL), intraventricular hemorrhage (IVH), and retinopathy of prematurity (ROP). RESULTS A total of 9 randomized controlled trials were included. The Meta analysis showed that compared with the NIPPV group, the NHFOV group had significantly lower reintubation rate within 72 hours after extubation (RR=0.67, 95%CI: 0.52-0.88, P=0.003) and PCO2 at 6-24 hours after switch to noninvasive assisted ventilation (MD=-4.12, 95%CI: -6.12 to -2.13, P<0.001). There was no significant difference between the two groups in the incidence rates of complications such as BPD, air leak, nasal damage, PVL, IVH, and ROP (P>0.05). CONCLUSIONS Compared with NIPPV, NHFOV can effectively remove CO2 and reduce the risk of reintubation, without increasing the incidence of complications such as BPD, air leak, nasal damage, PVL, and IVH, and therefore, it can be used as a sequential respiratory support mode for preterm infants after extubation.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007234 Infant, Premature A human infant born before 37 weeks of GESTATION. Neonatal Prematurity,Premature Infants,Preterm Infants,Infant, Preterm,Infants, Premature,Infants, Preterm,Premature Infant,Prematurity, Neonatal,Preterm Infant
D007385 Intermittent Positive-Pressure Ventilation Application of positive pressure to the inspiratory phase when the patient has an artificial airway in place and is connected to a ventilator. BIPAP Biphasic Intermittent Positive Airway Pressure,IPPV,Inspiratory Positive-Pressure Ventilation,Ventilation, Intermittent Positive-Pressure,Biphasic Intermittent Positive Airway Pressure,Inspiratory Positive Pressure Ventilation,Intermittent Positive Pressure Ventilation,Positive-Pressure Ventilation, Inspiratory,Positive-Pressure Ventilation, Intermittent,Ventilation, Inspiratory Positive-Pressure,Ventilation, Intermittent Positive Pressure
D012127 Respiratory Distress Syndrome, Newborn A condition of the newborn marked by DYSPNEA with CYANOSIS, heralded by such prodromal signs as dilatation of the alae nasi, expiratory grunt, and retraction of the suprasternal notch or costal margins, mostly frequently occurring in premature infants, children of diabetic mothers, and infants delivered by cesarean section, and sometimes with no apparent predisposing cause. Infantile Respiratory Distress Syndrome,Neonatal Respiratory Distress Syndrome,Respiratory Distress Syndrome, Infant
D001997 Bronchopulmonary Dysplasia A chronic lung disease developed after OXYGEN INHALATION THERAPY or mechanical ventilation (VENTILATION, MECHANICAL) usually occurring in certain premature infants (INFANT, PREMATURE) or newborn infants with respiratory distress syndrome (RESPIRATORY DISTRESS SYNDROME, NEWBORN). Histologically, it is characterized by the unusual abnormalities of the bronchioles, such as METAPLASIA, decrease in alveolar number, and formation of CYSTS. Dysplasia, Bronchopulmonary
D006612 High-Frequency Ventilation Ventilatory support system using frequencies from 60-900 cycles/min or more. Three types of systems have been distinguished on the basis of rates, volumes, and the system used. They are high frequency positive-pressure ventilation (HFPPV); HIGH-FREQUENCY JET VENTILATION; (HFJV); and high-frequency oscillation (HFO). High-Frequency Oscillation Ventilation,High-Frequency Positive Pressure Ventilation,Ventilation, High-Frequency,High Frequency Oscillation Ventilation,High Frequency Positive Pressure Ventilation,High Frequency Ventilation,Ventilation, High Frequency,High Frequency Ventilations,High-Frequency Oscillation Ventilations,High-Frequency Ventilations,Oscillation Ventilation, High-Frequency,Oscillation Ventilations, High-Frequency,Ventilation, High-Frequency Oscillation,Ventilations, High Frequency,Ventilations, High-Frequency,Ventilations, High-Frequency Oscillation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D045422 Continuous Positive Airway Pressure A technique of respiratory therapy, in either spontaneously breathing or mechanically ventilated patients, in which airway pressure is maintained above atmospheric pressure throughout the respiratory cycle by pressurization of the ventilatory circuit. (On-Line Medical Dictionary [Internet]. Newcastle upon Tyne(UK): The University Dept. of Medical Oncology: The CancerWEB Project; c1997-2003 [cited 2003 Apr 17]. Available from: http://cancerweb.ncl.ac.uk/omd/) Airway Pressure Release Ventilation,BiPAP Bilevel Positive Airway Pressure,BiPAP Biphasic Positive Airway Pressure,Bilevel Positive Airway Pressure,Biphasic Positive Airway Pressure,APRV Ventilation Mode,Bilevel Continuous Positive Airway Pressure,Biphasic Continuous Positive Airway Pressure,CPAP Ventilation,Nasal Continuous Positive Airway Pressure,nCPAP Ventilation,APRV Ventilation Modes,Ventilation Mode, APRV,Ventilation Modes, APRV,Ventilation, CPAP,Ventilation, nCPAP
D060666 Airway Extubation Removal of an endotracheal tube from the patient. Endotracheal Extubation,Extubation, Intratracheal,Tracheal Extubation,Airway Extubations,Endotracheal Extubations,Extubation, Airway,Extubation, Endotracheal,Extubation, Tracheal,Extubations, Airway,Extubations, Endotracheal,Extubations, Intratracheal,Extubations, Tracheal,Intratracheal Extubation,Intratracheal Extubations,Tracheal Extubations

Related Publications

Hong-Ke Shi, and Ke-Ling Liang, and Li-Hua An, and Bing Zhang, and Cheng-Yun Zhang
January 2023, Journal of neonatal-perinatal medicine,
Hong-Ke Shi, and Ke-Ling Liang, and Li-Hua An, and Bing Zhang, and Cheng-Yun Zhang
March 2019, Respiratory research,
Hong-Ke Shi, and Ke-Ling Liang, and Li-Hua An, and Bing Zhang, and Cheng-Yun Zhang
January 2016, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians,
Hong-Ke Shi, and Ke-Ling Liang, and Li-Hua An, and Bing Zhang, and Cheng-Yun Zhang
August 2020, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians,
Copied contents to your clipboard!