Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. 2023

Krista M Wartchow, and Giselli Scaini, and João Quevedo
Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.

Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001714 Bipolar Disorder A major affective disorder marked by severe mood swings (manic or major depressive episodes) and a tendency to remission and recurrence. Affective Psychosis, Bipolar,Bipolar Disorder Type 1,Bipolar Disorder Type 2,Bipolar Mood Disorder,Depression, Bipolar,Manic Depression,Manic Disorder,Manic-Depressive Psychosis,Psychosis, Manic-Depressive,Type 1 Bipolar Disorder,Type 2 Bipolar Disorder,Psychoses, Manic-Depressive,Bipolar Affective Psychosis,Bipolar Depression,Bipolar Disorders,Bipolar Mood Disorders,Depression, Manic,Depressions, Manic,Disorder, Bipolar,Disorder, Bipolar Mood,Disorder, Manic,Manic Depressive Psychosis,Manic Disorders,Mood Disorder, Bipolar,Psychoses, Bipolar Affective,Psychoses, Manic Depressive,Psychosis, Bipolar Affective,Psychosis, Manic Depressive
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

Krista M Wartchow, and Giselli Scaini, and João Quevedo
June 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
January 2018, Current neuropharmacology,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
June 2017, Acta neuropsychiatrica,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
January 1991, Annals of the New York Academy of Sciences,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
January 1976, Transactions. Section on Otolaryngology. American Academy of Ophthalmology and Otolaryngology,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
May 2001, Biological psychiatry,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
January 1982, Developmental neuroscience,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
June 2004, Harefuah,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
June 2003, Biological psychiatry,
Krista M Wartchow, and Giselli Scaini, and João Quevedo
January 2022, Molecular psychiatry,
Copied contents to your clipboard!