Putative gliotoxin, alpha-aminoadipic acid, fails to kill hippocampal astrocytes in vivo. 1987

B N Saffran, and K A Crutcher
Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132.

The putative gliotoxic compound, alpha-aminoadipic acid (AAA), has previously been reported to be a glial-selective toxin exerting its effects both in vivo and in vitro. This study sought to examine the effects of this compound on adult rat hippocampal astrocytes in vivo. Fourteen adult male Sprague-Dawley rats were injected with high concentrations of either the L-isomer or the racemic mixture of AAA into the dorsal hippocampal formation or corpus striatum. The animals were allowed to survive for times ranging from 4 to 48 h and the possible toxicity of the acid on astrocytes was monitored by glial fibrillary acidic protein (GFAP) immunocytochemistry. In every case, the GFAP-positive cells at the level of the injection site appeared identical, both in morphology and cell density, to control preparations. Based on our results, we conclude that AAA is not toxic to adult rat hippocampal astrocytes in vivo, nor could we confirm previous reports of toxicity to striatal astrocytes.

UI MeSH Term Description Entries
D008297 Male Males
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000600 Amino Acids, Dicarboxylic Dicarboxylic Amino Acids,Acids, Dicarboxylic Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015074 2-Aminoadipic Acid A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-METHYL-D-ASPARTATE; (NMDA). alpha-Aminoadipic Acid,2 Aminoadipic Acid,2-Aminohexanedioic Acid,2 Aminohexanedioic Acid,Acid, 2 Aminoadipic,Acid, 2-Aminoadipic,Acid, 2-Aminohexanedioic,Acid, alpha-Aminoadipic,Aminoadipic Acid, 2,alpha Aminoadipic Acid

Related Publications

B N Saffran, and K A Crutcher
November 1996, Brain research,
B N Saffran, and K A Crutcher
July 1986, Histology and histopathology,
B N Saffran, and K A Crutcher
February 1998, Journal of neurocytology,
B N Saffran, and K A Crutcher
September 1962, The Journal of biological chemistry,
B N Saffran, and K A Crutcher
March 1948, The Journal of biological chemistry,
B N Saffran, and K A Crutcher
October 1951, The Journal of biological chemistry,
Copied contents to your clipboard!