Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. 2023

Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.

UI MeSH Term Description Entries
D007107 Immune System The body's defense mechanism against foreign organisms or substances and deviant native cells. It includes the humoral immune response and the cell-mediated response and consists of a complex of interrelated cellular, molecular, and genetic components. Immune Systems,System, Immune,Systems, Immune
D000072737 Myeloid-Derived Suppressor Cells A heterogeneous, immature population of myeloid cells that can suppress the activity of T-CELLS and NATURAL KILLER CELLS in the INNATE IMMUNE RESPONSE and ADAPTIVE IMMUNE RESPONSE. They play important roles in ONCOGENESIS; INFLAMMATION; and INFECTION. MDSC,Myeloid Derived Suppressor Cell,MDSCs,Cell, Myeloid-Derived Suppressor,Cells, Myeloid-Derived Suppressor,Myeloid Derived Suppressor Cells,Myeloid-Derived Suppressor Cell,Suppressor Cell, Myeloid-Derived,Suppressor Cells, Myeloid-Derived
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014349 Trypanosoma cruzi The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors. Trypanosoma cruzus,cruzi, Trypanosoma
D014355 Chagas Disease Infection with the protozoan parasite TRYPANOSOMA CRUZI, a form of TRYPANOSOMIASIS endemic in Central and South America. It is named after the Brazilian physician Carlos Chagas, who discovered the parasite. Infection by the parasite (positive serologic result only) is distinguished from the clinical manifestations that develop years later, such as destruction of PARASYMPATHETIC GANGLIA; CHAGAS CARDIOMYOPATHY; and dysfunction of the ESOPHAGUS or COLON. Trypanosomiasis, South American,American Trypanosomiasis,Chagas' Disease,Trypanosoma cruzi Infection,Infection, Trypanosoma cruzi,Infections, Trypanosoma cruzi,South American Trypanosomiasis,Trypanosoma cruzi Infections,Trypanosomiasis, American
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
January 2021, Frontiers in cellular and infection microbiology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
September 2011, Journal of immunology (Baltimore, Md. : 1950),
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
October 2002, International immunology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
January 2021, Frontiers in cellular and infection microbiology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
November 2017, European journal of immunology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
March 2017, Viral immunology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
December 2021, Viral immunology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
February 2024, Cancer medicine,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
December 1980, The Journal of parasitology,
Eliana Borgna, and Estefanía Prochetto, and Juan Cruz Gamba, and Iván Marcipar, and Gabriel Cabrera
June 2021, Cancer metastasis reviews,
Copied contents to your clipboard!