In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells. 2023

Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.

BACKGROUND We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1. METHODS Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay's method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO). RESULTS Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies. CONCLUSIONS These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D005260 Female Females
D006569 Hesperidin A flavanone glycoside found in CITRUS fruit peels. 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)-,Hesperidin 2S,Hesperetin 7-Rhamnoglucoside,Hesperetin-7-Rutinoside,2S, Hesperidin,7-Rhamnoglucoside, Hesperetin,Hesperetin 7 Rhamnoglucoside,Hesperetin 7 Rutinoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal
D020780 Matrix Metalloproteinase 9 An endopeptidase that is structurally similar to MATRIX METALLOPROTEINASE 2. It degrades GELATIN types I and V; COLLAGEN TYPE IV; and COLLAGEN TYPE V. Gelatinase B,92-kDa Gelatinase,92-kDa Type IV Collagenase,MMP-9 Metalloproteinase,MMP9 Metalloproteinase,Matrix Metalloproteinase-9,92 kDa Gelatinase,92 kDa Type IV Collagenase,MMP 9 Metalloproteinase,Metalloproteinase 9, Matrix,Metalloproteinase, MMP-9,Metalloproteinase, MMP9

Related Publications

Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
April 2023, bioRxiv : the preprint server for biology,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
January 2015, American journal of translational research,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
December 2017, Cancer microenvironment : official journal of the International Cancer Microenvironment Society,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
April 2014, Breast cancer research and treatment,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
February 2021, Oncology letters,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
October 2016, Journal of cellular biochemistry,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
January 2016, Journal of clinical medicine,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
June 2016, Journal of experimental & clinical cancer research : CR,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
January 2015, PloS one,
Nur Dina Amalina, and Irfani Aura Salsabila, and Ummi Maryam Zulfin, and Riris Istighfari Jenie, and Edy Meiyanto
April 2020, International journal of molecular sciences,
Copied contents to your clipboard!