Transient non-susceptibility to Schistosoma mansoni associated with atrial amoebocytic accumulations in the snail host Biomphalaria glabrata. 1987

C S Richards, and D J Minchella
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20205.

In some Biomphalaria glabrata-Schistosoma mansoni combinations snails are susceptible to infection as juveniles, but have variable susceptibility as adults. These snails become non-susceptible at the onset of egg-laying and typically revert to susceptibility in old age. Certain stocks of B. glabrata have the capacity to form amoebocytic accumulations in the atrium, and this ability is under genetic control. The atrial amoebocytic accumulations are transitory, typically appearing at onset of egg-laying and disappearing after a few months. A snail stock which has genetic tendencies for both adult variable susceptibility and atrial amoebocytic accumulations was studied. An association between the time of occurrence of adult non-susceptibility and atrial accumulation is revealed as snails never became infected with S. mansoni when amoebocytic accumulations were present. Developing parasites, however, were not necessarily encapsulated and destroyed by amoebocytes. Some sporocysts were able to delay development until the amoebocytic accumulations disappeared. The timing of atrial amoebocytic accumulations and resulting transient non-susceptibility in this host-parasite combination could influence snail population dynamics.

UI MeSH Term Description Entries
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001700 Biomphalaria A genus of planorbid freshwater snails, species of which are intermediate hosts of Schistosoma mansoni. Australorbis,Australorbis glabratus,Australorbi,Biomphalarias
D012550 Schistosoma mansoni A species of trematode blood flukes of the family Schistosomatidae. It is common in the Nile delta. The intermediate host is the planorbid snail. This parasite causes schistosomiasis mansoni and intestinal bilharziasis. Schistosoma mansonus,mansonus, Schistosoma
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

C S Richards, and D J Minchella
June 1977, Experimental parasitology,
C S Richards, and D J Minchella
October 2007, International journal for parasitology,
C S Richards, and D J Minchella
September 1983, Journal of invertebrate pathology,
C S Richards, and D J Minchella
November 1973, The American journal of tropical medicine and hygiene,
C S Richards, and D J Minchella
March 2020, The Journal of parasitology,
Copied contents to your clipboard!