Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. 1979

S G Fischer, and L S Lerman

When double helical DNA is exposed to conditions favoring partial melting in polyacrylamide gels, its electrophoretic mobility undergoes a sharp cooperative transition, resulting in a large reduction in mobility. In the present experiments, where the transition is effected at a uniform temperature of 60 degrees C in a concentration gradient of a urea-formamide mixture, each Eco RI fragment of lambda or E. coli DNA exhibits the mobility transition at a characteristic concentration of the denaturant. The sudden retardation of fragments moving toward higher denaturant concentration in the gradient results in a pattern of sharpened zones in order depending upon nucleotide sequence, rather than size, and only very slightly dependent upon the time after the last fragment has been retarded. When combined with length-dependent electrophoresis in agarose in the perpendicular direction, this system provides a two-dimensional separation of fragments. The resolving power of the system is demonstrated by the clear resolution of over 250 fragments of the Eco RI digest of E. coli DNA. Corresponding fragments from an isogenic lambda lysogen of E. coli are found in the same positions, and additional fragments unique to the lysogen are evident.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

S G Fischer, and L S Lerman
February 1977, Archives internationales de physiologie et de biochimie,
S G Fischer, and L S Lerman
November 1993, Biochemical and biophysical research communications,
S G Fischer, and L S Lerman
January 1979, Methods in enzymology,
S G Fischer, and L S Lerman
December 1988, Journal of chromatography,
S G Fischer, and L S Lerman
April 1983, Analytical biochemistry,
S G Fischer, and L S Lerman
April 2012, Journal of visualized experiments : JoVE,
S G Fischer, and L S Lerman
May 2001, Current protocols in molecular biology,
S G Fischer, and L S Lerman
February 1977, Journal of molecular biology,
S G Fischer, and L S Lerman
January 1998, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!