There is less thalamic degeneration in neonatal-lesioned than in adult-lesioned cats after cerebral hemispherectomy. 1986

J R Villablanca, and J W Burgess, and F Benedetti

In order to study age-related processes of degeneration and recovery, the left hemitelencephalon was surgically removed in 5 adult cats and 5 neonatal kittens which were compared to 5 intact controls. After long survival, brains were sectioned in the coronal plane and thionine-stained. Drawings of gross and microscopic thalamic structures were made at 4 planes and computer-digitized to provide 7 measures: total thalamic area at planes A 7.5 and A 8.5; counts of neuroglia, small neurons (31-100 microns2) and large neurons (101-1000 microns2); area of neuroglia, small neurons and large neurons. All cellular measurements were in the ventrobasal complex at planes A 8.0 and A 10.0. Morphological changes were found bilaterally in all lesioned cats. Ipsilateral to the ablation in adult-lesioned cats, thalamic area, large neuron count and glia cells size were markedly and significantly decreased (P less than 0.01), while in neonatal-lesioned cats these changes were present but significantly reduced in magnitude compared to adult-lesioned animals. In addition, adult-lesioned cats showed a marked increase in glial cell numbers (P less than 0.01) and a decrease in small neuron size (P less than 0.01), while kitten-lesioned animals did not show changes in these measures. In the intact side of the brain, the thalamus of adult-lesioned cats was decreased in size (P less than 0.01), and glial cells were decreased in number and size (P less than 0.05), while in kitten-lesioned brains there were few changes. In both lesioned groups large neurons showed a significant increase in size (P less than 0.01). We conclude that neonatal hemispherectomy results in markedly less thalamic atrophy, retrograde neuronal degeneration and gliosis than the equivalent lesion in adults. The changes are discussed in the context of the increased neuroanatomical reorganization and functional recovery which were reported in neonatal- vs adult-lesioned animals.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001284 Atrophy Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes. Atrophies

Related Publications

J R Villablanca, and J W Burgess, and F Benedetti
April 1989, Behavioural brain research,
J R Villablanca, and J W Burgess, and F Benedetti
November 1997, Brain research,
J R Villablanca, and J W Burgess, and F Benedetti
July 1979, JAMA,
J R Villablanca, and J W Burgess, and F Benedetti
January 1963, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
J R Villablanca, and J W Burgess, and F Benedetti
January 2005, Neuropsychologia,
J R Villablanca, and J W Burgess, and F Benedetti
June 2001, Brain : a journal of neurology,
J R Villablanca, and J W Burgess, and F Benedetti
September 1983, Brain research,
Copied contents to your clipboard!