Sitagliptin attenuates neuronal apoptosis via inhibiting the endoplasmic reticulum stress after acute spinal cord injury. 2023

Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Regulation of endoplasmic reticulum stress (ER) stress-induced apoptosis and nerve regeneration is a hopeful way for acute spinal cord injury (SCI). Sitagliptin (Sita) is one of dipeptidyl peptidase-4 (DPP-4) inhibitor, which is beneficial neurons damaged diseases. However, its protective mechanisms of avoiding nerve injury remain unclear. In this study, we further investigated the mechanism of the anti-apoptotic and neuroprotective effects of Sita in promoting locomotor recovery from SCI. In vivo results showed that Sita treatment reduced neural apoptosis caused by SCI. Moreover, Sita effectively attenuated the ER tress and associated apoptosis in rats with SCI. A striking feature was the occurrence of nerve fiber regeneration at the lesion site, which eventually led to significant locomotion recovery. In vitro results showed that the PC12 cell injury model induced by Thapsigargin (TG) also showed similar neuroprotective effects. Overall, sitagliptin showed potent neuroprotective effects by targeting the ER stress-induced apoptosis both in vivo and vitro, thus facilitating the regeneration of the injured spinal cord.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D000068900 Sitagliptin Phosphate A pyrazine-derived DIPEPTIDYL-PEPTIDASE IV INHIBITOR and HYPOGLYCEMIC AGENT that increases the levels of the INCRETIN hormones GLUCAGON-LIKE PEPTIDE-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). It is used in the treatment of TYPE 2 DIABETES. 4-Oxo-4-(3-(trifluoromethyl)-5,6-dihydro(1,2,4)triazolo(4,3-a)pyrazin-7(8H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-amine,Januvia,MK 0431,MK-0431,MK0431,Sitagliptin,Sitagliptin Monophosphate Monohydrate,Sitagliptin Phosphate Anhydrous,Sitagliptin Phosphate Monohydrate,0431, MK,Anhydrous, Sitagliptin Phosphate,Monohydrate, Sitagliptin Monophosphate,Monohydrate, Sitagliptin Phosphate,Monophosphate Monohydrate, Sitagliptin,Phosphate Anhydrous, Sitagliptin,Phosphate Monohydrate, Sitagliptin,Phosphate, Sitagliptin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D059865 Endoplasmic Reticulum Stress Various physiological or molecular disturbances that impair ENDOPLASMIC RETICULUM function. It triggers many responses, including UNFOLDED PROTEIN RESPONSE, which may lead to APOPTOSIS; and AUTOPHAGY. Stress, Endoplasmic Reticulum,Endoplasmic Reticulum Stresses,Reticulum Stress, Endoplasmic,Reticulum Stresses, Endoplasmic,Stresses, Endoplasmic Reticulum
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective

Related Publications

Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
August 2023, Neurosurgical review,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
February 2024, Molecular neurobiology,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
March 2022, Neurological research,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
December 2019, Journal of cellular and molecular medicine,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
January 2022, Frontiers in pharmacology,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
May 2019, Biological & pharmaceutical bulletin,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
October 2014, Shock (Augusta, Ga.),
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
January 2016, American journal of translational research,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
April 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Chengxuan Tang, and Tianzhen Xu, and Minghai Dai, and Xiqiang Zhong, and Guangjie Shen, and Liangle Liu
May 2014, Journal of translational medicine,
Copied contents to your clipboard!