Cerebellar histamine-H1 receptor distribution: an autoradiographic study of Purkinje cell degeneration, staggerer, weaver and reeler mutant mouse strains. 1986

A Rotter, and A Frostholm

The distribution of 3H-mepyramine binding sites in cerebellae of normal mice and Purkinje cell degeneration, staggerer, weaver and reeler mutant mice was studied by light microscopic autoradiography. The binding of 3H-mepyramine to 20 micron coronal sections through the cerebellum and medulla had the characteristics expected of histamine-H1 receptor labeling. In the cerebellar cortex of normal mice, a high density of 3H-mepyramine binding was observed over the molecular layer and an intermediate density over the Purkinje cell layer, while the granule cell layer and white matter were almost devoid of labeling. The deep cerebellar nuclei were labeled to an intermediate density. In the 54 day old Purkinje cell degeneration mutant cerebellum, which is depleted of Purkinje cells, a greatly reduced labeling of the cerebellar cortex was observed. Labeling in the deep cerebellar nuclei was unaffected. In the 27 day old staggerer cerebellum, a mutation characterized by Purkinje cells which are almost devoid of spines and which do not form synaptic contacts with granule cells, a higher than normal grain density was seen over the cerebellar cortex, while normal grain density was observed over the deep cerebellar nuclei. The cerebellar cortex of 81 day old weaver mice, which is almost devoid of granule cells, had a high grain density over medial regions of the cortex, while the portion of the granule cell layer which remained relatively unaffected in the lateral parts of the cerebellum was unlabeled. The deep cerebellar nuclei had grain densities similar to littermate controls. In the 29 day old reeler cerebellae, which contain malpositioned Purkinje cells, high grain density regions corresponding to the heterotopically located Purkinje cells were observed. The present observations suggest that cerebellar cortical histamine-H1 receptors are associated predominantly with Purkinje cells. Furthermore, the expression of these H1 receptors appears not to be adversely affected by several alterations in the Purkinje cell environment, which have previously been shown to dramatically influence Purkinje cell morphology.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011968 Receptors, Histamine Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action. Histamine Binding Sites,Histamine Receptors,Histamine Receptor,Binding Sites, Histamine,Receptor, Histamine,Sites, Histamine Binding
D011969 Receptors, Histamine H1 A class of histamine receptors discriminated by their pharmacology and mode of action. Most histamine H1 receptors operate through the inositol phosphate/diacylglycerol second messenger system. Among the many responses mediated by these receptors are smooth muscle contraction, increased vascular permeability, hormone release, and cerebral glyconeogenesis. (From Biochem Soc Trans 1992 Feb;20(1):122-5) H1 Receptor,Histamine H1 Receptors,H1 Receptors,Histamine H1 Receptor,Receptors, H1,H1 Receptor, Histamine,H1 Receptors, Histamine,Receptor, H1,Receptor, Histamine H1
D002526 Cerebellar Diseases Diseases that affect the structure or function of the cerebellum. Cardinal manifestations of cerebellar dysfunction include dysmetria, GAIT ATAXIA, and MUSCLE HYPOTONIA. Cerebellar Dysfunction,Cerebellum Diseases,Cerebellar Disorders,Cerebellar Syndromes,Cerebellar Disease,Cerebellar Disorder,Cerebellar Dysfunctions,Cerebellar Syndrome,Cerebellum Disease,Disease, Cerebellar,Disease, Cerebellum,Disorder, Cerebellar,Dysfunction, Cerebellar,Syndrome, Cerebellar
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Rotter, and A Frostholm
January 1977, The Journal of comparative neurology,
A Rotter, and A Frostholm
October 1995, Brain research. Molecular brain research,
A Rotter, and A Frostholm
September 1982, Behavioral and neural biology,
Copied contents to your clipboard!