Pulmonary toxicity of 1,1-dichloroethylene: correlation of early changes with covalent binding. 1986

P G Forkert, and V Stringer, and K M Troughton

Administration of a single intraperitoneal dose of 1,1-dichloroethylene (125 mg/kg, 1,1-DCE) to mice resulted in bronchiolar injury with selective necrosis of Clara cells. Degenerative changes were manifest in Clara cells as early as 1 h following 1,1-DCE exposure, and were characterized by marked swelling of mitochondria and aggregation of chromatin against the nuclear membrane. Cell death was apparent at 2 h; by 8 h, areas of the bronchiolar epithelium were devoid of lining cells, and at 24 h, the majority of Clara cells were exfoliated. The residual epithelium consisted of flattened cells which formed a thin lining for the airway. Necrosis of Clara cells early in the course of 1,1-DCE exposure coincided with peak covalent binding of [14C]1,1-DCE and significant depression of components of the pulmonary mixed-function oxidase system; cytochrome P-450 and aryl hydrocarbon hydroxylase activity were markedly reduced but not depleted. Liver damage involving centrilobular hepatocytes was observed at 24 h in 30% of treated animals, and coincided with significant inhibition of aryl hydrocarbon hydroxylase activity; cytochrome P-450 content, however, remained unchanged. While changes in the liver evoked by 1,1-DCE were less striking, the results in lung demonstrate positive temporal correlations between structural damage, peak covalent binding and disturbances of monooxygenase enzymes.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004000 Dichloroethylenes Toxic chlorinated unsaturated hydrocarbons. Include both the 1,1- and 1,2-dichloro isomers. Both isomers are toxic, but 1,1-dichloroethylene is the more potent CNS depressant and hepatotoxin. It is used in the manufacture of thermoplastic polymers. Vinylidene Chlorides,Chlorides, Vinylidene
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

P G Forkert, and V Stringer, and K M Troughton
February 1994, Journal of toxicology and environmental health,
P G Forkert, and V Stringer, and K M Troughton
January 1993, Archives of toxicology,
P G Forkert, and V Stringer, and K M Troughton
February 1982, Experimental lung research,
P G Forkert, and V Stringer, and K M Troughton
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
P G Forkert, and V Stringer, and K M Troughton
January 1988, Reviews of environmental contamination and toxicology,
P G Forkert, and V Stringer, and K M Troughton
September 1973, Research communications in chemical pathology and pharmacology,
P G Forkert, and V Stringer, and K M Troughton
April 1983, Toxicology letters,
P G Forkert, and V Stringer, and K M Troughton
February 1981, Toxicology and applied pharmacology,
Copied contents to your clipboard!