| D011371 |
Progeria |
An abnormal congenital condition, associated with defects in the LAMIN TYPE A gene, which is characterized by premature aging in children, where all the changes of cell senescence occur. It is manifested by premature graying; hair loss; hearing loss (DEAFNESS); cataracts (CATARACT); ARTHRITIS; OSTEOPOROSIS; DIABETES MELLITUS; atrophy of subcutaneous fat; skeletal hypoplasia; elevated urinary HYALURONIC ACID; and accelerated ATHEROSCLEROSIS. Many affected individuals develop malignant tumors, especially SARCOMA. |
Hutchinson-Gilford Syndrome,Hutchinson Gilford Progeria Syndrome,Hutchinson-Gilford Progeria Syndrome,Hutchinson Gilford Syndrome,Hutchinson-Gilford Progeria Syndromes,Progeria Syndrome, Hutchinson-Gilford,Progeria Syndromes, Hutchinson-Gilford |
|
| D002467 |
Cell Nucleus |
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) |
Cell Nuclei,Nuclei, Cell,Nucleus, Cell |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D016922 |
Cellular Senescence |
Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. |
Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell |
|
| D044127 |
Epigenesis, Genetic |
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. |
Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics |
|