Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. 2023

Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico. arreola@ifisica.uaslp.mx.

Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.

UI MeSH Term Description Entries
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000075369 Anoctamin-1 An anoctamin chloride channel expressed at high levels in the liver, skeletal muscle, and gastrointestinal muscles that functions in transepithelial anion transport and smooth muscle contraction. It is essential for the function of the INTERSTITIAL CELLS OF CAJAL and plays a major role in chloride conduction by airway epithelial cells and in tracheal cartilage development. TMEM16A Protein,Transmembrane Protein 16A,Anoctamin 1
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
September 2017, British journal of pharmacology,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
March 2018, Biochimica et biophysica acta. Molecular and cell biology of lipids,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
December 2015, The Journal of physiology,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
September 2014, British journal of pharmacology,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
February 2012, Experimental physiology,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
December 2019, Cell calcium,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
June 2013, The Biochemical journal,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
July 2014, Developmental neurobiology,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
January 2017, PloS one,
Jorge Arreola, and Ana Elena López-Romero, and Patricia Pérez-Cornejo, and Aldo A Rodríguez-Menchaca
January 2014, PloS one,
Copied contents to your clipboard!