The influence of estrogen response element ERα signaling in the control of feeding behaviors in male and female mice. 2023

Ali Yasrebi, and Daniel Regan, and Troy A Roepke
Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.

Circulating 17β-estradiol (E2) controls energy homeostasis and feeding behaviors primarily by its nuclear receptor, estrogen receptor (ER) α. As such, it is important to understand the role of ERα signaling in the neuroendocrine control of feeding. Our previous data indicated that the loss of ERα signaling through estrogen response elements (ERE) alters food intake in a female mouse model. Hence, we hypothesize that ERE-dependent ERα is necessary for typical feeding behaviors in mice. To test this hypothesis, we examined feeding behaviors on low-fat diet (LFD) and high-fat diet (HFD) in three mouse strains: total ERα knockout (KO), ERα knockin/knockout (KIKO), which lack a functional DNA-binding domain, and their wild type (WT) C57 littermates comparing intact males and females and ovariectomized females with or without E2 replacement. All feeding behaviors were recorded using the Biological Data Acquisition monitoring system (Research Diets). In intact male mice, KO and KIKO consumed less than WT mice on LFD and HFD, while in intact female mice, KIKO consumed less than WT and KO. These differences were primarily driven by shorter meal duration in the KO and KIKO. In ovariectomized females, E2-treated WT and KIKO consumed more LFD than KO driven in part by an increase in meal frequency and a decrease in meal size. On HFD, WT consumed more than KO with E2, again due to effects on meal size and frequency. Collectively, these suggest that both ERE-dependent and -independent ERα signaling are involved in feeding behaviors in female mice depending on the diet consumed.

UI MeSH Term Description Entries
D008297 Male Males
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D047628 Estrogen Receptor alpha One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA. ERalpha,Estradiol Receptor alpha,Estrogen Receptor 1,Estrogen Receptors alpha,Receptor alpha, Estrogen,Receptor alpha, Estradiol,alpha, Estradiol Receptor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out
D020218 Response Elements Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions. Element, Response,Elements, Response,Response Element

Related Publications

Ali Yasrebi, and Daniel Regan, and Troy A Roepke
February 2017, Endocrinology,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
April 2007, Endocrinology,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
May 2023, Nature communications,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
October 2016, Proceedings of the National Academy of Sciences of the United States of America,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
December 2022, Scientific reports,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
October 1999, Proceedings of the National Academy of Sciences of the United States of America,
Ali Yasrebi, and Daniel Regan, and Troy A Roepke
January 2021, PloS one,
Copied contents to your clipboard!