Acetohydroxy acid synthase I of Escherichia coli: purification and properties. 1979

H Grimminger, and H E Umbarger

Several properties of the three acetohydroxy acid synthases of Escherichia coli have been compared in crude extracts. The three enzymes can be readily distinguished from each other. Acetohydroxy acid synthase I, the product of the ilvB gene, has been purified to near homogeneity. The purification was made possible by the fact that the enzyme was maintained in buffers of a high ionic strength or in buffers containing glycerol. Density gradient centrifugation studies indicated that the enzyme exists as a dimer of subunits of similar (60,000) molecular weight in buffers containing glycerol with or without two of the cofactors. Mg2+ and thiamine diphosphate. When flavine adenine dinucleotide was added along with Mg2+ and thiamine diphosphate, an increase in the rate of sedimentation occurred that was thought to be due to a rapid tetramer-dimer interconversion. The addition of pyruvate, the substrate, along with the three cofactors, resulted in a further increase in sedimentation rate, due presumably to an increase in the tetramer-to-dimer ratio. The addition of valine to the complete system resulted in maintenance of the enzyme in the dimeric state concomitant with inhibition of enzyme activity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000095 Acetolactate Synthase A flavoprotein enzyme that catalyzes the formation of acetolactate from 2 moles of PYRUVATE in the biosynthesis of VALINE and the formation of acetohydroxybutyrate from pyruvate and alpha-ketobutyrate in the biosynthesis of ISOLEUCINE. This enzyme was formerly listed as EC 4.1.3.18. Acetohydroxy Acid Synthase,Acetohydroxy Acid Synthetase,Acetolactate Synthetase,Acetohydroxyacid Synthetase I,Acetoxyhydroxyacid Synthase III,Acid Synthase, Acetohydroxy,Acid Synthetase, Acetohydroxy,Synthase III, Acetoxyhydroxyacid,Synthase, Acetohydroxy Acid,Synthase, Acetolactate,Synthetase I, Acetohydroxyacid,Synthetase, Acetohydroxy Acid,Synthetase, Acetolactate
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

H Grimminger, and H E Umbarger
January 1975, Journal of bacteriology,
H Grimminger, and H E Umbarger
January 1982, Annales de microbiologie,
H Grimminger, and H E Umbarger
February 1988, The Journal of biological chemistry,
H Grimminger, and H E Umbarger
October 1965, Biochimica et biophysica acta,
H Grimminger, and H E Umbarger
November 1979, Biochemical and biophysical research communications,
H Grimminger, and H E Umbarger
June 1972, The Biochemical journal,
Copied contents to your clipboard!