Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. 1986

P Skorupski, and K T Sillar

Both negative feedback, resistance reflexes and positive feedback, assistance reflexes are mediated by the thoracocoxal muscle receptor organ (TCMRO) in the crayfish, depending on the central excitability of the preparation. In this paper we present evidence that the velocity-sensitive afferent T fiber of the TCMRO may elicit either resistance or assistance reflexes in different preparations. In preparations displaying assistance reflexes, the S and T fibers of the TCMRO exert reciprocal effects on leg motor neurons (MNs). The S fiber excites promotor MNs (negative feedback) and inhibits remotor MNs, the T fiber excites remotor MNs (positive feedback) and inhibits promotor MNs. During reciprocal motor output of promotor and remotor MNs, reflexes mediated by the TCMRO are modulated in a phase-dependent manner. The TCMRO excites promotor MNs during their active phases (negative feedback) but inhibits them during their reciprocal phases. Remotor MNs are excited by the TCMRO during their active phases (positive feedback). It is proposed that depolarizing central inputs that occur in the S and T fibers at opposite phases of the motor output cycle (21) facilitate the output effects of each afferent in alternation, effectively mediating a phase-dependent shift between the effects of one afferent and the other. The implications of central modulation of reflex pathways and the possible functions of positive and negative feedback reflexes during locomotion are discussed.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Skorupski, and K T Sillar
February 2021, Current zoology,
P Skorupski, and K T Sillar
January 1981, The American journal of physiology,
P Skorupski, and K T Sillar
September 1994, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
P Skorupski, and K T Sillar
January 1965, Comparative biochemistry and physiology,
P Skorupski, and K T Sillar
October 2014, Animal reproduction science,
P Skorupski, and K T Sillar
January 1995, The Journal of experimental biology,
P Skorupski, and K T Sillar
February 2001, European journal of biochemistry,
Copied contents to your clipboard!