| D007521 |
Isocitrate Dehydrogenase |
An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. |
NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD |
|
| D007770 |
L-Lactate Dehydrogenase |
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. |
Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D009132 |
Muscles |
Contractile tissue that produces movement in animals. |
Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle |
|
| D002950 |
Citrate (si)-Synthase |
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. |
Citrate Synthase,Synthase, Citrate |
|
| D003386 |
Brachyura |
An infraorder of chiefly marine, largely carnivorous CRUSTACEA, in the order DECAPODA, including the genera Cancer, Uca, and Callinectes. |
Blue Crab,Callinectes sapidus,Carcinus maenas,Crab, Blue,Crab, Common Shore,Crab, Green,Crabs, Short-Tailed,Crabs, True,Green Crab,Uca,Common Shore Crab,European Shore Crab,Blue Crabs,Brachyuras,Carcinus maena,Common Shore Crabs,Crab, European Shore,Crab, Short-Tailed,Crab, True,Crabs, Blue,Crabs, Common Shore,Crabs, Green,Crabs, Short Tailed,Green Crabs,Shore Crab, Common,Shore Crab, European,Shore Crabs, Common,Short-Tailed Crab,Short-Tailed Crabs,True Crab,True Crabs,Ucas,maenas, Carcinus |
|
| D005987 |
Glyceraldehyde-3-Phosphate Dehydrogenases |
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. |
GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015094 |
3-Hydroxyacyl CoA Dehydrogenases |
Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis. |
beta-Hydroxyacyl Dehydrogenases,3 Hydroxyacyl CoA Dehydrogenases,CoA Dehydrogenases, 3-Hydroxyacyl,Dehydrogenases, 3-Hydroxyacyl CoA,Dehydrogenases, beta-Hydroxyacyl,beta Hydroxyacyl Dehydrogenases |
|