Highly Thermally Stable, Reversible, and Flexible Main Chain Type Benzoxazine Hybrid Incorporating Both Polydimethylsiloxane and Double-Decker Shaped Polyhedral Silsesquioxane Units through Diels-Alder Reaction. 2023

Cheng-Yu Chen, and Wei-Cheng Chen, and Mohamed Gamal Mohamed, and Zih-Yu Chen, and Shiao-Wei Kuo
Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D004129 Dimethylpolysiloxanes Silicone polymers which consist of silicon atoms substituted with methyl groups and linked by oxygen atoms. They comprise a series of biocompatible materials used as liquids, gels or solids; as film for artificial membranes, gels for implants, and liquids for drug vehicles; and as antifoaming agents. Dimethylsiloxanes,Polydimethylsiloxanes,Dimethylpolysiloxane,Dimethylsiloxane
D048588 Benzoxazines OXAZINES with a fused BENZENE ring. Benzoxazine,Benzoxazinoid,Benzoxazinone,Benzoxazinones,Benzoxazinoids
D061565 Cycloaddition Reaction Synthetic organic reactions that use reactions between unsaturated molecules to form cyclical products. Cycloaddition,Cycloaddition Reaction Techniques,Diels-Alder Reaction,Cycloaddition Reaction Technique,Cycloaddition Reactions,Diels Alder Reaction,Reaction Technique, Cycloaddition,Reaction Techniques, Cycloaddition,Reaction, Cycloaddition,Reaction, Diels-Alder,Reactions, Cycloaddition,Technique, Cycloaddition Reaction,Techniques, Cycloaddition Reaction

Related Publications

Cheng-Yu Chen, and Wei-Cheng Chen, and Mohamed Gamal Mohamed, and Zih-Yu Chen, and Shiao-Wei Kuo
August 2019, Polymers,
Cheng-Yu Chen, and Wei-Cheng Chen, and Mohamed Gamal Mohamed, and Zih-Yu Chen, and Shiao-Wei Kuo
April 2004, Proceedings of the National Academy of Sciences of the United States of America,
Cheng-Yu Chen, and Wei-Cheng Chen, and Mohamed Gamal Mohamed, and Zih-Yu Chen, and Shiao-Wei Kuo
December 2018, Organic letters,
Cheng-Yu Chen, and Wei-Cheng Chen, and Mohamed Gamal Mohamed, and Zih-Yu Chen, and Shiao-Wei Kuo
April 1998, The Journal of organic chemistry,
Copied contents to your clipboard!