Elucidation of conserved multi-epitope vaccine against Leishmania donovani using reverse vaccinology. 2024

Manas Ranjan Dikhit, and Abhik Sen
Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India.

Visceral leishmaniasis (VL) is a tropical disease that causes severe public health problems in humans when untreated. As no licensed vaccine exists against VL, we aimed to formulate a potential MHC-restricted chimeric vaccine construct against this dreadful parasitic disease. Amastin-like protein derived from L. donovani is considered to be stable, immunogenic and non-allergic. A comprehensive established framework was used to explore the set of immunogenic epitopes with estimated population coverage of 96.08% worldwide. The rigorous assessment revealed 6 promiscuous T-epitopes which can plausibly be presented by more than 66 diverse HLA alleles. Further docking and simulation study of peptide receptor complexes identified a strong and stable binding interaction with better structural compactness. The predicted epitopes were combined with appropriate linkers and adjuvant molecules and their translation efficiency was evaluated in pET28+(a), an bacterial expression vector using in-silico cloning. Molecular docking followed by MD simulation study revealed a stable interaction between chimeric vaccine construct with TLRs. Immune simulation of the chimeric vaccine constructs showed an elevated Th1 immune response against both B and T epitopes. With this, the detailed computational analysis suggested that the chimeric vaccine construct can evoke a robust immune response against Leishmania donovani infection. Future studies are required to validate the role of amastin as a promising vaccine target.Communicated by Ramaswamy H. Sarma.

UI MeSH Term Description Entries
D007893 Leishmania donovani A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects man and animals and causes visceral leishmaniasis (LEISHMANIASIS, VISCERAL). The sandfly genera Phlebotomus and Lutzomyia are the vectors. Leishmania (Leishmania) donovani,Leishmania leishmania donovani,Leishmania donovanus,Leishmania leishmania donovanus,donovani, Leishmania leishmania,donovanus, Leishmania,donovanus, Leishmania leishmania,leishmania donovanus, Leishmania
D007898 Leishmaniasis, Visceral A chronic disease caused by LEISHMANIA DONOVANI and transmitted by the bite of several sandflies of the genera Phlebotomus and Lutzomyia. It is commonly characterized by fever, chills, vomiting, anemia, hepatosplenomegaly, leukopenia, hypergammaglobulinemia, emaciation, and an earth-gray color of the skin. The disease is classified into three main types according to geographic distribution: Indian, Mediterranean (or infantile), and African. Black Fever,Kala-Azar,Fever, Black,Kala Azar,Visceral Leishmaniasis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000078782 Vaccinology Branch of medicine concerned with the development of vaccines to control disease by identifying genetic and other mechanisms and pathways that determine immune responses, and thereby provide new candidate vaccine approaches.
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D014612 Vaccines Suspensions of killed or attenuated microorganisms (bacteria, viruses, fungi, protozoa), antigenic proteins, synthetic constructs, or other bio-molecular derivatives, administered for the prevention, amelioration, or treatment of infectious and other diseases. Vaccine
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking
D018984 Epitopes, T-Lymphocyte Antigenic determinants recognized and bound by the T-cell receptor. Epitopes recognized by the T-cell receptor are often located in the inner, unexposed side of the antigen, and become accessible to the T-cell receptors after proteolytic processing of the antigen. T-Cell Epitopes,T-Lymphocyte Epitopes,T-Cell Epitope,T-Lymphocyte Epitope,Epitope, T-Cell,Epitope, T-Lymphocyte,Epitopes, T Lymphocyte,Epitopes, T-Cell,T Cell Epitope,T Cell Epitopes,T Lymphocyte Epitope,T Lymphocyte Epitopes
D018985 Epitopes, B-Lymphocyte Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen. B-Cell Epitopes,B-Lymphocyte Epitopes,B-Cell Epitope,B-Lymphocyte Epitope,B Cell Epitope,B Cell Epitopes,B Lymphocyte Epitope,B Lymphocyte Epitopes,Epitope, B-Cell,Epitope, B-Lymphocyte,Epitopes, B Lymphocyte,Epitopes, B-Cell
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

Manas Ranjan Dikhit, and Abhik Sen
August 2022, BMC bioinformatics,
Manas Ranjan Dikhit, and Abhik Sen
January 2022, International journal of peptide research and therapeutics,
Manas Ranjan Dikhit, and Abhik Sen
August 2023, Medical oncology (Northwood, London, England),
Copied contents to your clipboard!