Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance. 2023

John M Boyce
J.M. Boyce Consulting, LLC, 5123 Town Place, Middletown, CT, Connecticut, USA. jmboyce69@gmail.com.

Due to the substantial increase in the use of disinfectants containing quaternary ammonion compounds (QACs) in healthcare and community settings during the COVID-19 pandemic, there is increased concern that heavy use might cause bacteria to develop resistance to QACs or contribute to antibiotic resistance. The purpose of this review is to briefly discuss the mechanisms of QAC tolerance and resistance, laboratory-based evidence of tolerance and resistance, their occurrence in healthcare and other real-world settings, and the possible impact of QAC use on antibiotic resistance. A literature search was conducted using the PubMed database. The search was limited to English language articles dealing with tolerance or resistance to QACs present in disinfectants or antiseptics, and potential impact on antibiotic resistance. The review covered the period from 2000 to mid-Jan 2023. Mechanisms of QAC tolerance or resistance include innate bacterial cell wall structure, changes in cell membrane structure and function, efflux pumps, biofilm formation, and QAC degradation. In vitro studies have helped elucidate how bacteria can develop tolerance or resistance to QACs and antibiotics. While relatively uncommon, multiple episodes of contaminated in-use disinfectants and antiseptics, which are often due to inappropriate use of products, have caused outbreaks of healthcare-associated infections. Several studies have identified a correlation between benzalkonium chloride (BAC) tolerance and clinically-defined antibiotic resistance. The occurrence of mobile genetic determinants carrying multiple genes that encode for QAC or antibiotic tolerance raises the concern that widespread QAC use might facilitate the emergence of antibiotic resistance. Despite some evidence from laboratory-based studies, there is insufficient evidence in real-world settings to conclude that frequent use of QAC disinfectants and antiseptics has promoted widespread emergence of antibiotic resistance. Laboratory studies have identified multiple mechanisms by which bacteria can develop tolerance or resistance to QACs and antibiotics. De novo development of tolerance or resistance in real-world settings is uncommon. Increased attention to proper use of disinfectants is needed to prevent contamination of QAC disinfectants. Additional research is needed to answer many questions and concerns related to use of QAC disinfectants and their potential impact on antibiotic resistance.

UI MeSH Term Description Entries
D004202 Disinfectants Substances used on inanimate objects that destroy harmful microorganisms or inhibit their activity. Disinfectants are classed as complete, destroying SPORES as well as vegetative forms of microorganisms, or incomplete, destroying only vegetative forms of the organisms. They are distinguished from ANTISEPTICS, which are local anti-infective agents used on humans and other animals. (From Hawley's Condensed Chemical Dictionary, 11th ed) Biocide,Disinfectant,Biocides
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000086382 COVID-19 A viral disorder generally characterized by high FEVER; COUGH; DYSPNEA; CHILLS; PERSISTENT TREMOR; MUSCLE PAIN; HEADACHE; SORE THROAT; a new loss of taste and/or smell (see AGEUSIA and ANOSMIA) and other symptoms of a VIRAL PNEUMONIA. In severe cases, a myriad of coagulopathy associated symptoms often correlating with COVID-19 severity is seen (e.g., BLOOD COAGULATION; THROMBOSIS; ACUTE RESPIRATORY DISTRESS SYNDROME; SEIZURES; HEART ATTACK; STROKE; multiple CEREBRAL INFARCTIONS; KIDNEY FAILURE; catastrophic ANTIPHOSPHOLIPID ANTIBODY SYNDROME and/or DISSEMINATED INTRAVASCULAR COAGULATION). In younger patients, rare inflammatory syndromes are sometimes associated with COVID-19 (e.g., atypical KAWASAKI SYNDROME; TOXIC SHOCK SYNDROME; pediatric multisystem inflammatory disease; and CYTOKINE STORM SYNDROME). A coronavirus, SARS-CoV-2, in the genus BETACORONAVIRUS is the causative agent. 2019 Novel Coronavirus Disease,2019 Novel Coronavirus Infection,2019-nCoV Disease,2019-nCoV Infection,COVID-19 Pandemic,COVID-19 Pandemics,COVID-19 Virus Disease,COVID-19 Virus Infection,Coronavirus Disease 2019,Coronavirus Disease-19,SARS Coronavirus 2 Infection,SARS-CoV-2 Infection,Severe Acute Respiratory Syndrome Coronavirus 2 Infection,COVID19,2019 nCoV Disease,2019 nCoV Infection,2019-nCoV Diseases,2019-nCoV Infections,COVID 19,COVID 19 Pandemic,COVID 19 Virus Disease,COVID 19 Virus Infection,COVID-19 Virus Diseases,COVID-19 Virus Infections,Coronavirus Disease 19,Disease 2019, Coronavirus,Disease, 2019-nCoV,Disease, COVID-19 Virus,Infection, 2019-nCoV,Infection, COVID-19 Virus,Infection, SARS-CoV-2,Pandemic, COVID-19,SARS CoV 2 Infection,SARS-CoV-2 Infections,Virus Disease, COVID-19,Virus Infection, COVID-19
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000891 Anti-Infective Agents, Local Substances used on humans and other animals that destroy harmful microorganisms or inhibit their activity. They are distinguished from DISINFECTANTS, which are used on inanimate objects. Anti-Infective Agents, Topical,Antiseptic,Antiseptics,Microbicides, Local,Microbicides, Topical,Antiinfective Agents, Local,Antiinfective Agents, Topical,Local Anti-Infective Agents,Local Antiinfective Agents,Topical Anti-Infective Agents,Topical Antiinfective Agents,Agents, Local Anti-Infective,Agents, Local Antiinfective,Agents, Topical Anti-Infective,Agents, Topical Antiinfective,Anti Infective Agents, Local,Anti Infective Agents, Topical,Local Anti Infective Agents,Local Microbicides,Topical Anti Infective Agents,Topical Microbicides
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D058873 Pandemics Epidemics of infectious disease that have spread to many countries, often more than one continent, and usually affecting a large number of people. Pandemic
D064751 Ammonium Compounds Inorganic compounds that include a positively charged tetrahedral nitrogen (ammonium ion) as part of their structure. This class of compounds includes a broad variety of simple ammonium salts and derivatives. Ammonium

Related Publications

John M Boyce
April 1952, Journal of bacteriology,
John M Boyce
July 1999, Journal of medical microbiology,
John M Boyce
January 2014, Advances in experimental medicine and biology,
John M Boyce
August 1948, Farmacevtisk revy,
John M Boyce
September 1962, Journal of pharmaceutical sciences,
John M Boyce
September 2019, Environmental science and pollution research international,
John M Boyce
January 2007, Mikrobiyoloji bulteni,
Copied contents to your clipboard!