Improved plasmablast response after repeated pneumococcal revaccinations following primary immunization with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine in patients with chronic lymphocytic leukemia. 2023

Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
Section of Hematology, Department of Medicine, Faculty of Medicine and Health, Örebro University, SE 70185 Örebro, Sweden. Electronic address: Magdalena.kattstrom@regionorebrolan.se.

Patients with chronic lymphocytic leukemia (CLL) show an immune dysfunction with increased risk of infections and poor response to vaccination. Streptococcus pneumoniae is a common cause of morbidity and mortality in CLL patients. In a previous randomized clinical trial, we found a superior immune response in CLL patients receiving conjugated pneumococcal vaccine compared to non-conjugated vaccine. The response to revaccination in CLL patients is scarcely studied. In this study, early humoral response to repeated revaccinations with pneumococcal vaccines was evaluated, by determination of B cell subsets and plasmablast dynamics in peripheral blood. CLL patients (n = 14) and immunocompetent controls (n = 31) were revaccinated with a 13-valent pneumococcal conjugate vaccine (PCV13) after previous primary immunization (3-6 years ago) with PCV13 or a 23-valent pneumococcal polysaccharide vaccine (PPSV23). Eight weeks after the first revaccination, all CLL patients received a second revaccination with PCV13 or PPSV23. B cell subsets including plasmablasts were analyzed in peripheral blood by flow cytometry, before and after the first and the second revaccination. None of the CLL patients, but all controls, had detectable plasmablasts at baseline (p < 0.001). After the first revaccination with PCV13, the plasmablast proportions did not increase in CLL patients (p = 0.13), while increases were seen in controls (p < 0.001). However, after a second revaccination with PCV13 or PPSV23, plasmablasts increased compared to baseline also in CLL patients (p < 0.01). If no response was evident after first revaccination, only a second revaccination with PCV13 increased plasmablasts in contrast to PPSV23 revaccination. Patients with hypogammaglobulinemia and ongoing/previous CLL specific treatment responded poorly, also to a second revaccination. In CLL patients, pneumococcal revaccination induced minor early plasmablast response compared to controls, but the response improved using a strategy of repeated doses with of conjugated T cell dependent pneumococcal vaccine.

UI MeSH Term Description Entries
D007117 Immunization, Secondary Any immunization following a primary immunization and involving exposure to the same or a closely related antigen. Immunization, Booster,Revaccination,Secondary Immunization,Booster Immunization,Booster Immunizations,Immunizations, Booster,Immunizations, Secondary,Revaccinations,Secondary Immunizations
D011008 Pneumococcal Infections Infections with bacteria of the species STREPTOCOCCUS PNEUMONIAE. Streptococcus pneumoniae Infections,Infections, Pneumococcal,Infections, Streptococcus pneumoniae,Pneumococcal Diseases,Disease, Pneumococcal,Diseases, Pneumococcal,Infection, Pneumococcal,Infection, Streptococcus pneumoniae,Pneumococcal Disease,Pneumococcal Infection,Streptococcus pneumoniae Infection
D004311 Double-Blind Method A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment. Double-Masked Study,Double-Blind Study,Double-Masked Method,Double Blind Method,Double Blind Study,Double Masked Method,Double Masked Study,Double-Blind Methods,Double-Blind Studies,Double-Masked Methods,Double-Masked Studies,Method, Double-Blind,Method, Double-Masked,Methods, Double-Blind,Methods, Double-Masked,Studies, Double-Blind,Studies, Double-Masked,Study, Double-Blind,Study, Double-Masked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus
D014611 Vaccination Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis. Immunization, Active,Active Immunization,Active Immunizations,Immunizations, Active,Vaccinations
D015451 Leukemia, Lymphocytic, Chronic, B-Cell A chronic leukemia characterized by abnormal B-lymphocytes and often generalized lymphadenopathy. In patients presenting predominately with blood and bone marrow involvement it is called chronic lymphocytic leukemia (CLL); in those predominately with enlarged lymph nodes it is called small lymphocytic lymphoma. These terms represent spectrums of the same disease. B-Cell Leukemia, Chronic,B-Lymphocytic Leukemia, Chronic,Chronic Lymphocytic Leukemia,Leukemia, B-Cell, Chronic,Leukemia, Lymphocytic, Chronic,Lymphocytic Leukemia, Chronic, B-Cell,Lymphoma, Small Lymphocytic,B-Cell Chronic Lymphocytic Leukemia,B-Cell Malignancy, Low-Grade,Diffuse Well-Differentiated Lymphocytic Lymphoma,Disrupted In B-Cell Malignancy,Leukemia, B Cell, Chronic,Leukemia, Chronic Lymphatic,Leukemia, Chronic Lymphocytic,Leukemia, Chronic Lymphocytic, B-Cell,Leukemia, Lymphoblastic, Chronic,Leukemia, Lymphocytic, Chronic, B Cell,Lymphoblastic Leukemia, Chronic,Lymphocytic Leukemia, Chronic,Lymphocytic Leukemia, Chronic, B Cell,Lymphocytic Lymphoma,Lymphocytic Lymphoma, Diffuse, Well Differentiated,Lymphocytic Lymphoma, Diffuse, Well-Differentiated,Lymphocytic Lymphoma, Well Differentiated,Lymphocytic Lymphoma, Well-Differentiated,Lymphoma, Lymphocytic,Lymphoma, Lymphocytic, Diffuse, Well Differentiated,Lymphoma, Lymphocytic, Diffuse, Well-Differentiated,Lymphoma, Lymphocytic, Well Differentiated,Lymphoma, Lymphocytic, Well-Differentiated,Lymphoma, Lymphoplasmacytoid, CLL,Lymphoma, Small Lymphocytic, Plasmacytoid,Lymphoma, Small-Cell,Lymphoplasmacytoid Lymphoma, CLL,Small-Cell Lymphoma,B Cell Chronic Lymphocytic Leukemia,B Cell Leukemia, Chronic,B Cell Malignancy, Low Grade,B Lymphocytic Leukemia, Chronic,B-Cell Leukemias, Chronic,B-Cell Malignancies, Low-Grade,B-Lymphocytic Leukemias, Chronic,CLL Lymphoplasmacytoid Lymphoma,CLL Lymphoplasmacytoid Lymphomas,Chronic B-Cell Leukemia,Chronic B-Cell Leukemias,Chronic B-Lymphocytic Leukemia,Chronic B-Lymphocytic Leukemias,Chronic Lymphatic Leukemia,Chronic Lymphatic Leukemias,Chronic Lymphoblastic Leukemia,Chronic Lymphoblastic Leukemias,Chronic Lymphocytic Leukemias,Diffuse Well Differentiated Lymphocytic Lymphoma,Disrupted In B Cell Malignancy,Leukemia, Chronic B-Cell,Leukemia, Chronic B-Lymphocytic,Leukemias, Chronic B-Cell,Leukemias, Chronic B-Lymphocytic,Leukemias, Chronic Lymphatic,Leukemias, Chronic Lymphoblastic,Low-Grade B-Cell Malignancies,Low-Grade B-Cell Malignancy,Lymphatic Leukemia, Chronic,Lymphatic Leukemias, Chronic,Lymphoblastic Leukemias, Chronic,Lymphocytic Leukemias, Chronic,Lymphocytic Lymphoma, Small,Lymphocytic Lymphomas,Lymphocytic Lymphomas, Small,Lymphocytic Lymphomas, Well-Differentiated,Lymphoma, CLL Lymphoplasmacytoid,Lymphoma, Small Cell,Lymphoma, Well-Differentiated Lymphocytic,Lymphomas, CLL Lymphoplasmacytoid,Lymphomas, Lymphocytic,Lymphomas, Small Lymphocytic,Lymphomas, Small-Cell,Lymphomas, Well-Differentiated Lymphocytic,Lymphoplasmacytoid Lymphomas, CLL,Malignancies, Low-Grade B-Cell,Malignancy, Low-Grade B-Cell,Small Cell Lymphoma,Small Lymphocytic Lymphoma,Small Lymphocytic Lymphomas,Small-Cell Lymphomas,Well-Differentiated Lymphocytic Lymphoma,Well-Differentiated Lymphocytic Lymphomas
D016022 Case-Control Studies Comparisons that start with the identification of persons with the disease or outcome of interest and a control (comparison, referent) group without the disease or outcome of interest. The relationship of an attribute is examined by comparing both groups with regard to the frequency or levels of outcome over time. Case-Base Studies,Case-Comparison Studies,Case-Referent Studies,Matched Case-Control Studies,Nested Case-Control Studies,Case Control Studies,Case-Compeer Studies,Case-Referrent Studies,Case Base Studies,Case Comparison Studies,Case Control Study,Case Referent Studies,Case Referrent Studies,Case-Comparison Study,Case-Control Studies, Matched,Case-Control Studies, Nested,Case-Control Study,Case-Control Study, Matched,Case-Control Study, Nested,Case-Referent Study,Case-Referrent Study,Matched Case Control Studies,Matched Case-Control Study,Nested Case Control Studies,Nested Case-Control Study,Studies, Case Control,Studies, Case-Base,Studies, Case-Comparison,Studies, Case-Compeer,Studies, Case-Control,Studies, Case-Referent,Studies, Case-Referrent,Studies, Matched Case-Control,Studies, Nested Case-Control,Study, Case Control,Study, Case-Comparison,Study, Case-Control,Study, Case-Referent,Study, Case-Referrent,Study, Matched Case-Control,Study, Nested Case-Control
D018074 Vaccines, Conjugate Semisynthetic vaccines consisting of polysaccharide antigens from microorganisms attached to protein carrier molecules. The carrier protein is recognized by macrophages and T-cells thus enhancing immunity. Conjugate vaccines induce antibody formation in people not responsive to polysaccharide alone, induce higher levels of antibody, and show a booster response on repeated injection. Conjugate Vaccine,Conjugate Vaccines,Vaccine, Conjugate

Related Publications

Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
January 2019, Human vaccines & immunotherapeutics,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
January 2014, PloS one,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
July 2023, Vaccines,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
January 2014, Vaccine,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
September 2019, Infectious diseases and therapy,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
November 2016, The Pediatric infectious disease journal,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
September 2014, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
October 2010, Drugs,
Magdalena Kättström, and Bertil Uggla, and Elisabet Tina, and Eva Kimby, and Torbjörn Norén, and Simon Athlin
September 2017, Allergy and asthma proceedings,
Copied contents to your clipboard!