Modulation of the executive control network by anodal tDCS over the left dorsolateral prefrontal cortex improves task shielding in dual tasking. 2023

Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
Department of Psychology, University of Greifswald, Franz-Mehring-Strasse 47, 17489, Greifswald, Germany. devu.mahesan@uni-greifswald.de.

Task shielding is an important executive control demand in dual-task performance enabling the segregation of stimulus-response translation processes in each task to minimize between-task interference. Although neuroimaging studies have shown activity in left dorsolateral prefrontal cortex (dlPFC) during various multitasking performances, the specific role of dlPFC in task shielding, and whether non-invasive brain stimulation (NIBS) may facilitate task shielding remains unclear. We therefore applied a single-blind, crossover sham-controlled design in which 34 participants performed a dual-task experiment with either anodal transcranial direct current stimulation (atDCS, 1 mA, 20 min) or sham tDCS (1 mA, 30 s) over left dlPFC. Task shielding was assessed by the backward-crosstalk effect, indicating the extent of between-task interference in dual tasks. Between-task interference was largest at high temporal overlap between tasks, i.e., at short stimulus onset asynchrony (SOA). Most importantly, in these conditions of highest multitasking demands, atDCS compared to sham stimulation significantly reduced between-task interference in error rates. These findings extend previous neuroimaging evidence and support modulation of successful task shielding through a conventional tDCS setup with anodal electrode over the left dlPFC. Moreover, our results demonstrate that NIBS can improve shielding of the prioritized task processing, especially in conditions of highest vulnerability to between-task interference.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000087643 Dorsolateral Prefrontal Cortex The upper surfaces of the prefrontal cortex comprising the rostral parts of the superior frontal gyrus and the middle frontal gyrus. It is involved in EXECUTIVE FUNCTION. Brodmann Area 46,Brodmann Area 9,Brodmann Area 9 and 46,Brodmann Areas 9 and 46,Brodmann's Area 46,Brodmann's Area 9,Brodmann's Area 9 and 46,Brodmann's Areas 9 and 46,DLPFC,Prefrontal Cortex, Dorsolateral,Area 46, Brodmann,Area 46, Brodmann's,Area 9, Brodmann,Area 9, Brodmann's,Brodmanns Area 46,Brodmanns Area 9,Cortex, Dorsolateral Prefrontal,Dorsolateral Prefrontal Cortices
D016037 Single-Blind Method A method in which either the observer(s) or the subject(s) is kept ignorant of the group to which the subjects are assigned. Single-Masked Study,Single-Blind Study,Single-Masked Method,Method, Single-Blind,Method, Single-Masked,Methods, Single-Blind,Methods, Single-Masked,Single Blind Method,Single Blind Study,Single Masked Method,Single Masked Study,Single-Blind Methods,Single-Blind Studies,Single-Masked Methods,Single-Masked Studies,Studies, Single-Blind,Studies, Single-Masked,Study, Single-Blind,Study, Single-Masked
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D056344 Executive Function A set of cognitive functions that controls complex, goal-directed thought and behavior. Executive function involves multiple domains, such as CONCEPT FORMATION, goal management, cognitive flexibility, INHIBITION control, and WORKING MEMORY. Impaired executive function is seen in a range of disorders, e.g., SCHIZOPHRENIA; and ADHD. Executive Control,Executive Controls,Executive Functions,Function, Executive,Functions, Executive
D018592 Cross-Over Studies Studies comparing two or more treatments or interventions in which the subjects or patients, upon completion of the course of one treatment, are switched to another. In the case of two treatments, A and B, half the subjects are randomly allocated to receive these in the order A, B and half to receive them in the order B, A. A criticism of this design is that effects of the first treatment may carry over into the period when the second is given. (Last, A Dictionary of Epidemiology, 2d ed) Cross-Over Design,Cross-Over Trials,Crossover Design,Crossover Studies,Crossover Trials,Cross Over Design,Cross Over Studies,Cross Over Trials,Cross-Over Designs,Cross-Over Study,Crossover Designs,Crossover Study,Design, Cross-Over,Design, Crossover,Designs, Cross-Over,Designs, Crossover,Studies, Cross-Over,Studies, Crossover,Study, Cross-Over,Study, Crossover,Trial, Cross-Over,Trial, Crossover,Trials, Cross-Over,Trials, Crossover
D065908 Transcranial Direct Current Stimulation A technique of brain electric stimulation therapy which uses constant, low current delivered via ELECTRODES placed on various locations on the scalp. Anodal Stimulation Transcranial Direct Current Stimulation,Anodal Stimulation tDCS,Cathodal Stimulation Transcranial Direct Current Stimulation,Cathodal Stimulation tDCS,Repetitive Transcranial Electrical Stimulation,Transcranial Alternating Current Stimulation,Transcranial Electrical Stimulation,Transcranial Random Noise Stimulation,tDCS,Anodal Stimulation tDCSs,Cathodal Stimulation tDCSs,Electrical Stimulation, Transcranial,Electrical Stimulations, Transcranial,Stimulation tDCS, Anodal,Stimulation tDCS, Cathodal,Stimulation tDCSs, Anodal,Stimulation tDCSs, Cathodal,Stimulation, Transcranial Electrical,Stimulations, Transcranial Electrical,Transcranial Electrical Stimulations,tDCS, Anodal Stimulation,tDCS, Cathodal Stimulation,tDCSs, Anodal Stimulation,tDCSs, Cathodal Stimulation

Related Publications

Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
December 2018, Movement disorders : official journal of the Movement Disorder Society,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
November 2021, Scientific reports,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
January 2023, Frontiers in neuroscience,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
December 2018, Movement disorders : official journal of the Movement Disorder Society,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
January 2015, Brain stimulation,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
April 2012, Brain stimulation,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
January 2020, International journal of women's health,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
June 2017, Somatosensory & motor research,
Devu Mahesan, and Daria Antonenko, and Agnes Flöel, and Rico Fischer
January 2020, Neuroscience letters,
Copied contents to your clipboard!