Bisphosphonates as Potential Inhibitors of Calcification in Bioprosthetic Heart Valves (Review). 2022

T P Timchenko
Junior Researcher, Laboratory of Bioprosthetics; Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk, 630055, Russia.

As early as 50 years ago, bisphosphonates turned from a water treatment agent into one of the most widely used groups of drugs for the treatment of various diseases of calcium metabolism (bone tissue resorption, oncological complications of neurodegenerative diseases and others). Years of research on bisphosphonates have contributed to the understanding of their molecular and cellular pathways of their action. All bisphosphonates have a similar structure and common properties, however, there are obvious chemical, biochemical, and pharmacological differences between them. Each bisphosphonate has its own unique profile. This review summarizes data on the mechanisms of action of bisphosphonates, demonstrates the experience and prospects for their use for the modification of cardiovascular bioprostheses, since the issue of preventing bisphosphonate calcification has not been settled yet.

UI MeSH Term Description Entries
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002114 Calcinosis Pathologic deposition of calcium salts in tissues. Calcification, Pathologic,Calcinosis, Tumoral,Microcalcification,Microcalcinosis,Pathologic Calcification,Calcinoses,Calcinoses, Tumoral,Microcalcifications,Microcalcinoses,Tumoral Calcinoses,Tumoral Calcinosis
D004164 Diphosphonates Organic compounds which contain P-C-P bonds, where P stands for phosphonates or phosphonic acids. These compounds affect calcium metabolism. They inhibit ectopic calcification and slow down bone resorption and bone turnover. Technetium complexes of diphosphonates have been used successfully as bone scanning agents. Bisphosphonate,Bisphosphonates
D006351 Heart Valves Flaps of tissue that prevent regurgitation of BLOOD from the HEART VENTRICLES to the HEART ATRIA or from the PULMONARY ARTERIES or AORTA to the ventricles. Cardiac Valves,Cardiac Valve,Heart Valve,Valve, Cardiac,Valve, Heart,Valves, Cardiac,Valves, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T P Timchenko
September 2009, Biomaterials,
T P Timchenko
March 2001, The Journal of thoracic and cardiovascular surgery,
T P Timchenko
January 1994, The Journal of heart valve disease,
T P Timchenko
September 1992, The Journal of heart valve disease,
T P Timchenko
December 2004, Expert opinion on biological therapy,
T P Timchenko
January 2020, Annals of biomedical engineering,
T P Timchenko
January 1997, Biomedical instrumentation & technology,
T P Timchenko
May 1997, The International journal of artificial organs,
T P Timchenko
October 2003, The Journal of thoracic and cardiovascular surgery,
Copied contents to your clipboard!