Reduction-Responsive Docetaxel Prodrug Encapsulated within Human Serum Albumin Nanoparticles for Cancer Therapy. 2023

Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.

Docetaxel (DTX), a semisynthetic analogue of paclitaxel, is often used to treat cancers. Owing to its poor aqueous solubility, the current formulation of DTX for clinical applications involves using high surfactant and ethanol concentrations, causing hypersensitivity reactions. To overcome this issue, we developed a reduction-responsive DTX prodrug encapsulated within human serum albumin (HSA) nanoparticles (DTX-SS-COOH/HSA NPs). First, the DTX prodrug was conjugated to undecanoic acid through a disulfide bond (DTX-SS-COOH) via a four-step reaction. Subsequently, DTX-SS-COOH/HSA NPs were prepared via the desolvation method. The NPs exhibited a spherical structure with a diameter range of 140-220 nm, as revealed by dynamic light scattering and transmission electron microscopy. Fluorescence quenching analysis confirmed the formation of DTX-SS-COOH/HSA, which was ascribed to electrostatic interactions and hydrophobic forces. Notably, NPs with a feed mole ratio corresponding to DTX-SS-COOH/HSA = 9:1 demonstrated high drug-loading and encapsulation efficiency of 12.84 and 93.11%, respectively, alongside good stability. Moreover, the reduced responsiveness experiment revealed an accelerated DTX release in the presence of glutathione. An in vivo pharmacokinetic study indicated that DTX-SS-COOH/HSA NPs demonstrated considerably a prolonged circulation time (6.2-fold) compared to that of free DTX. Ultimately, the antitumor test of MDA-MB-231 tumor-bearing mice revealed that DTX-SS-COOH/HSA NPs were superior to DTX/HSA NPs for tumor growth inhibition. Thus, DTX-SS-COOH/HSA NPs represent a promising DTX nanoformulation for clinical application.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000075462 Serum Albumin, Human Serum albumin from humans. It is an essential carrier of both endogenous substances, such as fatty acids and BILIRUBIN, and of XENOBITOICS in the blood. Albumin Human,Human Albumin,Human Serum Albumin,Albumin, Human,Albumin, Human Serum,Human, Albumin
D000077143 Docetaxel A semisynthetic analog of PACLITAXEL used in the treatment of locally advanced or metastatic BREAST NEOPLASMS and NON-SMALL CELL LUNG CANCER. Docetaxel Anhydrous,Docetaxel Hydrate,Docetaxel Trihydrate,Docetaxol,N-Debenzoyl-N-tert-butoxycarbonyl-10-deacetyltaxol,NSC 628503,RP 56976,RP-56976,Taxoltere Metro,Taxotere,N Debenzoyl N tert butoxycarbonyl 10 deacetyltaxol,RP56976
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D017239 Paclitaxel A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death. 7-epi-Taxol,Anzatax,Bris Taxol,NSC-125973,Onxol,Paclitaxel, (4 alpha)-Isomer,Paxene,Praxel,Taxol,Taxol A,7 epi Taxol,NSC 125973,NSC125973,Taxol, Bris
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
November 2015, Chemistry (Weinheim an der Bergstrasse, Germany),
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
January 2015, Biotechnology letters,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
March 2015, Acta biomaterialia,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
January 2024, International journal of biological macromolecules,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
March 2021, Carbohydrate polymers,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
March 2022, Advanced science (Weinheim, Baden-Wurttemberg, Germany),
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
January 2019, Biomedical engineering online,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
May 2019, International journal of biological macromolecules,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
September 2023, Chembiochem : a European journal of chemical biology,
Yanhao Zhang, and Hao Zhang, and Ji Wang, and Chao Liu, and Hanlei Xing, and Yuhao Jiang, and Xinsong Li
February 2018, Nanomedicine (London, England),
Copied contents to your clipboard!