Nicorandil Exerts Anticonvulsant Effects in Pentylenetetrazol-Induced Seizures and Maximal-Electroshock-Induced Seizures by Downregulating Excitability in Hippocampal Pyramidal Neurons. 2023

Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China.

N-(2-hydroxyethyl) nicotinamide nitrate (nicorandil), a nitrate that activates adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, is generally used in the treatment of angina and offers long-term cardioprotective effects. It has been reported that several KATP channel openers can effectively alleviate the symptoms of seizure. The purpose of this study was to investigate the improvement in seizures induced by nicorandil. In this study, seizure tests were used to evaluate the effect of different doses of nicorandil by analysing seizure incidence, including minimal clonic seizure and generalised tonic-clonic seizure. We used a maximal electroshock seizure (MES) model, a metrazol maximal seizure (MMS) model and a chronic pentylenetetrazol (PTZ)-induced seizure model to evaluate the effect of nicorandil in improving seizures. Each mouse in the MES model was given an electric shock, while those in the nicorandil group received 0.5, 1, 2, 3 and 6 mg/kg of nicorandil by intraperitoneal injection, respectively. In the MMS model, the mice in the PTZ group and the nicorandil group were injected subcutaneously with PTZ (90 mg/kg), and the mice in the nicorandil group were injected intraperitoneally with 1, 3 and 5 mg/kg nicorandil, respectively. In the chronic PTZ-induced seizure model, the mice in the PTZ group and the nicorandil group were injected intraperitoneally with PTZ (40 mg/kg), and the mice in the nicorandil group were each given 1 and 3 mg/kg of PTZ at a volume of 200 nL. Brain slices containing the hippocampus were prepared, and cell-attached recording was used to record the spontaneous firing of pyramidal neurons in the hippocampal CA1 region. Nicorandil (i.p.) significantly increased both the maximum electroconvulsive protection rate in the MES model and the seizure latency in the MMS model. Nicorandil infused directly onto the hippocampal CA1 region via an implanted cannula relieved symptoms in chronic PTZ-induced seizures. The excitability of pyramidal neurons in the hippocampal CA1 region of the mice was significantly increased after both the acute and chronic administration of PTZ. To a certain extent, nicorandil reversed the increase in both firing frequency and proportion of burst spikes caused by PTZ (P < 0.05). Our results suggest that nicorandil functions by downregulating the excitability of pyramidal neurons in the hippocampal CA1 region of mice and is a potential candidate for the treatment of seizures.

UI MeSH Term Description Entries
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D010433 Pentylenetetrazole A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility. Leptazole,Pentamethylenetetrazole,Pentetrazole,Cardiazol,Corasol,Corazol,Corazole,Korazol,Korazole,Metrazol,Metrazole,Pentazol,Pentylenetetrazol
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
May 2019, Iranian journal of medical sciences,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
February 2018, Journal of ethnopharmacology,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
January 2022, Acta neurobiologiae experimentalis,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
March 1979, The Journal of pharmacology and experimental therapeutics,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
April 1990, Neuropharmacology,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
October 1980, Journal of pharmacobio-dynamics,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
December 2022, Epilepsy & behavior : E&B,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
November 2016, Epilepsy research,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
January 2017, Iranian journal of pharmaceutical research : IJPR,
Jing Zhao, and Dan Liang, and Tao Xie, and Jing Qiang, and Qian Sun, and Lan Yang, and Weiping Wang
August 1978, Neuropharmacology,
Copied contents to your clipboard!