The ovalbumin split gene: molecular cloning of Eco RI fragments "c" and "d". 1978

J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon

The Eco RI fragments "c" and "d" of the ovalbumin gene (1, 2) have been isolated by molecular cloning. Restriction enzyme mapping and electron microscopy have confirmed that the two fragments contain the same ovalbumin mRNA coding sequences. These sequences are split into two regions which have been mapped in fragments "c" and "d". There is no evidence that the ovalbumin mRNA sequences contained in these fragments could be further interrupted. Our results confirm that the presence of Eco RI fragment "d" in some chickens is due to the existence of an allelic variant of the ovalbumin gene which contains an additional Eco RI site within the region corresponding to Eco RI fragment "c". This additional Eco RI site appears to be the main difference between the two alleles. Finally, our results provide a direct demonstration that most of the ovalbumin mRNA sequences are encoded for by Eco RI fragments "a", "b" and "c".

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
January 1982, DNA (Mary Ann Liebert, Inc.),
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
November 1977, Nucleic acids research,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
June 1978, Nature,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
May 1979, Proceedings of the National Academy of Sciences of the United States of America,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
March 1975, FEBS letters,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
March 1988, Nucleic acids research,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
November 1977, Nature,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
January 2014, Genetics and molecular research : GMR,
J P LePennec, and P Baldacci, and F Perrin, and B Cami, and P Gerlinger, and A Krust, and P Kourilsky, and P Chambon
October 1978, Gene,
Copied contents to your clipboard!