Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. 1986

R M Learned, and T K Learned, and M M Haltiner, and R T Tjian

The human rRNA promoter contains two distinct cis-control sequences, the core and upstream control element (UCE), that serve as the target for binding cellular trans-activating proteins involved in transcription initiation by RNA polymerase I. One of these factors, SL1, has been extensively purified and shown to be a species-specific factor required to reconstitute in vitro RNA synthesis. DNAase footprinting revealed that although SL1 alone does not bind specifically to rRNA promoter sequences, a second factor, UBF1, recruits SL1 to the template and directs binding to an extended region encompassing sequences in the UCE. Analysis of mutant and human-mouse hybrid promoters indicate that protein-DNA interactions at the UCE modulate the efficiency of rRNA synthesis. Transcription from the human rRNA promoter appears to require an unusual set of protein-DNA transactions in which recognition and binding to an upstream cis-control element is carried out by one factor (UBF1), whereas activation requires an additional factor, SL1, acting in conjunction with UBF1 to trigger transcription.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
August 1993, Nucleic acids research,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
August 1999, The Journal of biological chemistry,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
January 2014, Biochemical and biophysical research communications,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
December 1984, Cell,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
March 2017, The Journal of biological chemistry,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
September 2001, Nucleic acids research,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
July 1999, Brain research. Molecular brain research,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
R M Learned, and T K Learned, and M M Haltiner, and R T Tjian
April 2006, The Journal of biological chemistry,
Copied contents to your clipboard!