Exercise and glycogen depletion: effects on ability to activate muscle phosphorylase. 1986

S H Constable, and R J Favier, and J O Holloszy

Phosphorylase activation reverses during prolonged contractile activity. Our first experiment was designed to determine whether this loss of ability to activate phosphorylase by stimulation of muscle contraction persists following exercise. Phosphorylase activation by stimulation of muscle contraction was markedly inhibited in rats 25 min after exhausting exercise. To evaluate the role of glycogen depletion, we accelerated glycogen utilization by nicotinic acid administration. A large difference in muscle glycogen depletion during exercise of the same duration did not influence the blunting of phosphorylase activation. Phosphorylase activation by stimulation of contraction was more severely inhibited following prolonged exercise than after a shorter bout of exercise under conditions that resulted in the same degree of glycogen depletion. A large difference in muscle glycogen repletion during 90 min of recovery was not associated with a significant difference in the ability of muscle stimulation to activate phosphorylase, which was still significantly blunted. Phosphorylase activation by epinephrine was also markedly inhibited in muscle 25 min after strenuous exercise but had recovered completely in glycogen-repleted muscle 90 min after exercise. These results provide evidence that an effect of exercise other than glycogen depletion is involved in causing the inhibition of phosphorylase activation; however, they do not rule out the possibility that glycogen depletion also plays a role in this process.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006003 Glycogen
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S H Constable, and R J Favier, and J O Holloszy
April 1994, Journal of applied physiology (Bethesda, Md. : 1985),
S H Constable, and R J Favier, and J O Holloszy
January 1989, Journal of applied physiology (Bethesda, Md. : 1985),
S H Constable, and R J Favier, and J O Holloszy
October 1999, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire,
S H Constable, and R J Favier, and J O Holloszy
December 2003, American journal of physiology. Endocrinology and metabolism,
S H Constable, and R J Favier, and J O Holloszy
October 1990, Journal of applied physiology (Bethesda, Md. : 1985),
S H Constable, and R J Favier, and J O Holloszy
January 1984, European journal of applied physiology and occupational physiology,
S H Constable, and R J Favier, and J O Holloszy
April 1986, Journal of applied physiology (Bethesda, Md. : 1985),
S H Constable, and R J Favier, and J O Holloszy
March 2023, Sports medicine and health science,
S H Constable, and R J Favier, and J O Holloszy
October 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S H Constable, and R J Favier, and J O Holloszy
May 1968, Canadian journal of biochemistry,
Copied contents to your clipboard!