The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/N-acetylglucosamine-binding lectin in rat liver. 1986

R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill

A small-scale affinity chromatographic procedure was developed to screen for the presence of fucose and mannose/N-acetylglucosamine-binding lectins in small amounts of rat tissues. Of all tissues examined, only the liver contained the fucose-binding lectin, whereas both liver and blood serum contained the mannose/N-acetylglucosamine lectin. By means of immunocytological methods using antibodies to hepatic lectins, the fucose lectin was shown to be uniquely present in Kupffer cells and absent in all other types of rat macrophages examined. The binding and uptake of different neoglycoproteins by nonparenchymal cell fractions of liver indicated that the fucose-binding lectin was either not responsible for the uptake or that more than one lectin was acting. With the identification of another lectin (Mr = 180,000) by the above screening procedure for hepatic lectins and the results of studies in the following paper (Haltiwanger, R.S., and Hill, R. L. (1986) J. Biol. Chem. 261, 7440-7444) two lectins appear to be involved. A small amount of the hepatic mannose/N-acetylglucosamine lectin was found by the above screening procedure to have a higher affinity for L-fucosyl-bovine serum albumin-Sepharose than the majority of the lectin in hepatocytes. This lectin, called the high affinity form, was purified and its properties examined. On a weight basis the high affinity form bound 7-12 times more ligand than the normal form. Its Ka for L-fucosyl-bovine serum albumin was 2.3 X 10(9) M-1 compared to 3.5 X 10(8) M-1 for the normal form. Moreover, the concentrations of monosaccharides required to inhibit the high affinity form were about 3 times less than those required to inhibit binding of the normal form. The two forms, however, have identical molecular weights (32,000) under reducing and nonreducing conditions, bind anti-lectin antibodies in the same way, and give identical peptide maps after V-8 protease digestion. The structural basis for the different binding affinities of the two forms remains unknown.

UI MeSH Term Description Entries
D007728 Kupffer Cells Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood and dispose of worn out red blood cells. Kupffer Cell,Cell, Kupffer,Cells, Kupffer
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses

Related Publications

R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
January 1981, The Biochemical journal,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
January 1989, Methods in enzymology,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
July 2010, Plant physiology,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
April 1982, The Journal of biological chemistry,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
February 1989, The Biochemical journal,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
January 2020, Methods in molecular biology (Clifton, N.J.),
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
October 1988, Journal of biochemistry,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
July 1996, FEBS letters,
R S Haltiwanger, and M A Lehrman, and A E Eckhardt, and R L Hill
January 1982, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!