The visual system of the channel catfish (Ictalurus punctatus). I. Retinal ganglion cell morphology. 1986

A A Dunn-Meynell, and S C Sharma

Horseradish peroxidase was applied to lesions in the optic nerve of catfish (Ictalurus punctatus). The retinae were processed to reveal HRP-labelled ganglion cells. The histochemical techniques employed allowed fine details of the dendritic arbor to be resolved. Flat-mounted retinae were examined and the following characteristics were noted in individual ganglion cells: Soma area, shape, and depth; number and diameter of major dendrites; shape, area, and depth(s) within the inner plexiform layer (ipl) of the dendritic arbor; origin of the axon (from the soma or a dendrite). On the basis of these characteristics, eleven classes of ganglion cells were delineated: four classes of giant cells (G1-G4) and seven classes of smaller cells (S1-S7). G1 cells had dendrites arborizing in the most distal sublamina of the ipl. G1 cells in the dorsal retina had nasotemporally elongated dendritic arbors. G2 cells had dendrites in the proximal portion of the ipl. G3 cells were almost completely confined to a band running between the nasal and temporal retinal poles, through the center of the retina. In this location, the cells had dorsoventrally elongated dendritic arbors, which were bistratified in the ipl. G4 cells were displaced into the inner nuclear layer. S1 and S4 cells had axons arising from their somata, and dendrites arborizing in the distal and the proximal ipl, respectively. S2 cells were typified by their unstratified dendritic arbors. Similarly, S3 cells were characterised by their bistratified arbors. S5 cells arborized in the most proximal ipl sublamina. S6 cells were small ganglion cells with their somata lying in the inner nuclear layer. S7 cells tended to have complex dendritic arbors, and their axons arose from dendrites.

UI MeSH Term Description Entries
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D012183 Retrograde Degeneration Pathologic changes that occur in the axon and cell body of a neuron proximal to an axonal lesion. The process is characterized by central chromatolysis which features flattening and displacement of the nucleus, loss of Nissl bodies, and cellular edema. Central chromatolysis primarily occurs in lower motor neurons. Axon Reaction,Nissl Degeneration,Retrograde Degeneration, Transneuronal,Axonal Reaction,Trans-Synaptic Degeneration,Axon Reactions,Axonal Reactions,Degeneration, Nissl,Degeneration, Retrograde,Degeneration, Trans-Synaptic,Degeneration, Transneuronal Retrograde,Degenerations, Retrograde,Degenerations, Trans-Synaptic,Degenerations, Transneuronal Retrograde,Reaction, Axon,Reaction, Axonal,Reactions, Axon,Reactions, Axonal,Retrograde Degenerations,Retrograde Degenerations, Transneuronal,Trans Synaptic Degeneration,Trans-Synaptic Degenerations,Transneuronal Retrograde Degeneration,Transneuronal Retrograde Degenerations
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

A A Dunn-Meynell, and S C Sharma
January 1990, Brain, behavior and evolution,
A A Dunn-Meynell, and S C Sharma
October 1996, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,
A A Dunn-Meynell, and S C Sharma
January 2007, Developmental and comparative immunology,
A A Dunn-Meynell, and S C Sharma
January 1985, Journal of wildlife diseases,
A A Dunn-Meynell, and S C Sharma
December 1985, American journal of veterinary research,
A A Dunn-Meynell, and S C Sharma
May 1983, Bulletin of environmental contamination and toxicology,
A A Dunn-Meynell, and S C Sharma
December 1990, Xenobiotica; the fate of foreign compounds in biological systems,
A A Dunn-Meynell, and S C Sharma
July 1997, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,
A A Dunn-Meynell, and S C Sharma
January 2008, Developmental and comparative immunology,
A A Dunn-Meynell, and S C Sharma
June 1993, Journal of veterinary pharmacology and therapeutics,
Copied contents to your clipboard!