Interocular transfer of adaptation after effect in neurons of area 17 and 18 of split chiasm cats. 1986

L Maffei, and N Berardi, and S Bisti

Responses to sinusoidal gratings for neurons in area 17 and 18 of split chiasm cats were recorded extracellularly, and the interocular transfer of the effect of adaptation to high-contrast gratings was studied. In area 17 all but one of the simple cells showed the phenomenon of adaptation and its interocular transfer; 60% of the complex cells showed the effect of adaptation, and of these cells 35% showed an interocular transfer of adaptation. The adaptation aftereffect was comparable both in strength and duration for the direct and the callosal pathway. The strength of the adaptation aftereffect through the callosal pathway was not related to the strength of the input from the contralateral eye. An interocular transfer of the adaptation aftereffect was found in several neurons with a very weak input from the contralateral eye and in five simple cells apparently responding only to the ipsilateral eye. Fifty-eight percent of the neurons in area 18 showed the effect of adaptation, and 55% of them showed interocular transfer. No interocular transfer of the adaptation aftereffect was found in those neurons where an input from the contralateral eye was undetectable. Interocular transfer of the adaptation was found in all the neurons recorded in area 17 of animals with section of the corpus callosum but intact chiasm. No interocular transfer was found in neurons recorded in area 17 of cats with both the optic chiasm and the corpus callosum sectioned. We conclude that callosal connections are sufficient for the transfer of the adaptation aftereffect, although they are not necessary.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

L Maffei, and N Berardi, and S Bisti
February 1978, Experimental brain research,
L Maffei, and N Berardi, and S Bisti
August 1988, Experimental neurology,
L Maffei, and N Berardi, and S Bisti
July 1970, Journal of comparative and physiological psychology,
L Maffei, and N Berardi, and S Bisti
June 1978, Journal of comparative and physiological psychology,
L Maffei, and N Berardi, and S Bisti
December 1984, Behavioural brain research,
L Maffei, and N Berardi, and S Bisti
September 1960, Science (New York, N.Y.),
L Maffei, and N Berardi, and S Bisti
January 1968, Science (New York, N.Y.),
L Maffei, and N Berardi, and S Bisti
March 1979, Brain research,
L Maffei, and N Berardi, and S Bisti
January 1995, Journal fur Hirnforschung,
Copied contents to your clipboard!