Evaluation of dental pulp stem cells behavior after odontogenic differentiation induction by three different bioactive materials on two different scaffolds. 2023

Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
Endodontic Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.

To study the odontogenic potential of dental pulp stem cells (DPSCs) after induction with three different bioactive materials: activa bioactive (base/liner) (AB), TheraCal LC (TC), and mineral trioxide aggregate (MTA), when combined with two different types of scaffolds. DPSCs were isolated from freshly extracted premolars of young orthodontic patients, cultured, expanded to passage 4 (P), and characterized by flow cytometric analysis. DPSCs were seeded onto two scaffolds in contact with different materials (AB, TC, and MTA). The first scaffold contained polycaprolactone-nano-chitosan and synthetic hydroxyapatite (PCL-NC-HA), whereas the second scaffold contained polycaprolactone-nano-chitosan and synthetic Mg-substituted hydroxyapatite (PCL-NC-Mg-HA). DPSC viability and proliferation were evaluated at various time points. To assess odontoblastic differentiation, gene expression analysis of dentin sialophosphoprotein (DSPP) by quantitative real-time polymerase chain reaction (qRT-PCR) and morphological changes in cells were performed using inverted microscope phase contrast images and scanning electron microscopy. The fold-change in DSPP between subgroups was compared using a one-way ANOVA. Tukey's test was used to compare the fold-change in DSPP between the two subgroups in multiple comparisons, and P was set at p < 0.05. DSPP expression was significantly higher in the PCL-NC-Mg-HA group than in the PCL-NC-HA group, and scanning electron microscopy revealed a strong attachment of odontoblast-like cells to the scaffold that had a stronger odontogenic differentiation effect on DPSCs than the scaffold that did not contain magnesium. MTA has a significantly higher odontogenic differentiation effect on cultured DPSCs than AB or TC does. The combination of scaffolds and bioactive materials improves DPSCs induction in odontoblast-like cells. The PCL-NC-Mg-HA scaffold showed better odontogenic differentiation effects on cultured DPSCs. Compared to AB and TC, MTA is the most effective bioactive material for inducing the odontogenic differentiation of cultured DPSCs.

UI MeSH Term Description Entries
D009805 Odontogenesis The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS). Odontogeneses
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006882 Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed) Hydroxyapatite Derivatives,Derivatives, Hydroxyapatite
D001641 Bicuspid One of the eight permanent teeth, two on either side in each jaw, between the canines (CUSPID) and the molars (MOLAR), serving for grinding and crushing food. The upper have two cusps (bicuspid) but the lower have one to three. (Jablonski, Dictionary of Dentistry, 1992, p822) Premolar,Bicuspids,Premolars
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D060888 Real-Time Polymerase Chain Reaction Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction. Kinetic Polymerase Chain Reaction,Quantitative Real-Time PCR,Quantitative Real-Time Polymerase Chain Reaction,Real-Time PCR,PCR, Quantitative Real-Time,PCR, Real-Time,PCRs, Quantitative Real-Time,PCRs, Real-Time,Quantitative Real Time PCR,Quantitative Real Time Polymerase Chain Reaction,Quantitative Real-Time PCRs,Real Time PCR,Real Time Polymerase Chain Reaction,Real-Time PCR, Quantitative,Real-Time PCRs,Real-Time PCRs, Quantitative

Related Publications

Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
June 2024, Cellular and molecular biology (Noisy-le-Grand, France),
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
November 2016, Brazilian oral research,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
January 2021, PeerJ,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
October 2015, BMC oral health,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
May 2020, Acta odontologica Scandinavica,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
June 2013, Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
April 2021, Heliyon,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
February 2024, Clinical and experimental dental research,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
June 2016, Journal of molecular histology,
Basma Ahmed, and Mai H Ragab, and Rania A Galhom, and Hayam Y Hassan
May 2016, Polymers,
Copied contents to your clipboard!