Inhibitory Effects of Honokiol on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice. 2023

Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea; Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam.

Inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are known to be abundant in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc). Thus, it has been recognized as an initial synaptic site for regulating orofacial nociceptive stimuli. Honokiol, a principal active ingredient derived from the bark of Magnolia officinalis, has been exploited in traditional remedies with multiple biological effects, including anti-nociception on humans. However, the anti-nociceptive mechanism of honokiol on SG neurons of the Vc remains fully elusive. In this study, effects of honokiol on SG neurons of the Vc in mice were investigated using the whole-cell patch-clamp method. In a concentration-dependent manner, honokiol significantly enhanced frequencies of spontaneous postsynaptic currents (sPSCs) that were independent of action potential generation. Notably, honokiol-induced increase in the frequency of sPSCs was attributed to the release of inhibitory neurotransmitters through both glycinergic and GABAergic pre-synaptic terminals. Furthermore, higher concentration of honokiol induced inward currents that were noticeably attenuated in the presence of picrotoxin (a GABAA receptor antagonist) or strychnine (a glycine receptor antagonist). Honokiol also exhibited potentiation effect on glycine- and GABAA receptor-mediated responses. In inflammatory pain model, the increase in frequency of spontaneous firing on SG neurons induced by formalin was significantly inhibited by the application of honokiol. Altogether, these findings indicate that honokiol might directly affect SG neurons of the Vc to facilitate glycinergic and GABAergic neurotransmissions and modulate nociceptive synaptic transmission against pain. Consequently, the inhibitory effect of honokiol in the central nociceptive system contributes to orofacial pain management.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013376 Substantia Gelatinosa Gelatinous-appearing material in the dorsal horn of the spinal cord, consisting chiefly of Golgi type II neurons and some larger nerve cells. Lamina 2,Lamina II,Substantia Gelatinosa of Rolando,Gelatinosa, Substantia,Gelatinosas, Substantia,Rolando Substantia Gelatinosa,Substantia Gelatinosas
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
January 2019, The Chinese journal of physiology,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
September 2020, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
December 2009, Brain research,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
December 2016, Amino acids,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
January 2019, The Chinese journal of physiology,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
January 2011, Brain research,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
September 2019, General physiology and biophysics,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
September 2015, European journal of pharmacology,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
January 2013, The American journal of Chinese medicine,
Ha Thuy Nhung Le, and Santosh Rijal, and Seon Hui Jang, and Seon Ah Park, and Soo Joung Park, and Won Jung, and Seong Kyu Han
January 2014, Brain research,
Copied contents to your clipboard!