Colony-forming units in diffusion chambers (CFU-d) and colony-forming units in agar culture (CFU-c) obtained from normal human bone marrow: a possible parent-progeny relationship. 1979

N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore

An series of experiments was performed to elucidate the relationship between cells that form granulocytic colonies in fibrin clot diffusion chambers implanted into the peritoneum (i.p.) of irradiated mice (CFU-d) and day 7 and day 14 CFU-U which give rise to colonies after 7 and 14 days in agar cultures in vitro, respectively. Normal human bone marrow cells were cultured in suspension in vitro or in diffusion chambers implanted into irradiated or non-irradiated mice. During these culture conditions there was an initial decrease in the number of CFU-c per culture. This was followed by an increase between day 2 and day 7 of culture. No similar increase of neutrophilic CFU-d was observed. When CFU-d, day 14 and day 7 CFU-c in normal marrow were separated by velocity sedimentation and cultured in suspension culture or in diffusion chambers for 7 days, the maximum increase of day 7 and day 14 CFU-c was observed in slowly sedimenting cell fractions which contained the majority of CFU-d. After 3 days in suspension culture, the maximum increase of day 14 CFU-c was found in fractions which also gave rise to maximum numbers of CFU-c after 7 days. However, day 7 CFU-c were found in fractions which initially contained the majority of day 14 CFU-c. No increase in CFU-d was found in fractions initially containing peak numbers of CFU-c. Between 53 and 71% of CFU-c harvested from diffusion chambers in irradiated mice or from suspension cultures were sensitive to pulse incubation with tritiated thymidine, suggesting that the cells were proliferating during these culture conditions. In diffusion chambers implanted into non-irradiated mice, however, CFU-c were found to be relatively resistant to this treatment (3-11% sensitive to tritiated thymidine). Thus marked increases in CFU-c were also observed during experimental conditions, where no significant DNA synthesis was detected. A reproducible time sequence of increase in CFU-c populations in culture was observed. Day 14 CFU-c and cells that gave rise to clusters on day 7 in agar increased between day 2 and day 4, whereas day 7 CFU-c increased between day 4 and day 7. The results suggested that CFU-d gave rise to CFU-c in culture and that day 14 CFU-c were precursors of day 7 CFU-c.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte

Related Publications

N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
April 1985, Scandinavian journal of haematology,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
January 1984, Progress in clinical and biological research,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
March 1981, Indian journal of cancer,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
November 1984, International journal of cell cloning,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
January 1978, Experimental cell research,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
August 1980, Blood,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
November 1976, British journal of cancer,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
May 1982, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
N Jacobsen, and H E Broxmeyer, and E Grossbard, and M A Moore
March 1973, British journal of haematology,
Copied contents to your clipboard!