Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. 1986

R Kreiling, and R J Laib, and J G Filser, and H M Bolt

Metabolism of 1,3-butadiene to 1,2-epoxybutene-3 in rats follows saturation kinetics. Comparative investigation of inhalation pharmacokinetics in mice also revealed a saturation pattern. For both species "linear" pharmacokinetics apply at exposure concentrations below 1000 ppm 1,3-butadiene; saturation of butadiene metabolism is observed at atmospheric concentrations of about 2000 ppm. For mice metabolic clearance per kg body weight in the lower concentration range where first order metabolism applies was 7300 ml X h-1 (rat: 4500 ml X h-1. Maximal metabolic elimination rate (Vmax) was 400 mumol X h-1 X kg-1 (rat: 220 mumol X h-1 X kg-1. This shows that 1,3-butadiene is metabolized by mice at higher rates compared to rats. Based on these investigations, the metabolic elimination rates of butadiene in both species were calculated for the exposure concentrations applied in two inhalation bioassays with rats and with mice. The results show that the higher rate of butadiene metabolism in mice when compared to rats may only in part be responsible for the considerable difference in the susceptibility of both species to butadiene-induced carcinogenesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R Kreiling, and R J Laib, and J G Filser, and H M Bolt
October 1996, Toxicology,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
November 1988, Toxicology letters,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
July 1994, Toxicology and applied pharmacology,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
October 1996, Toxicology,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
January 1996, Advances in experimental medicine and biology,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
November 2013, Toxicology letters,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
January 1998, Mutation research,
R Kreiling, and R J Laib, and J G Filser, and H M Bolt
March 2007, Chemico-biological interactions,
Copied contents to your clipboard!