Anticipation of Appetitive Operant Action Induces Sustained Dopamine Release in the Nucleus Accumbens. 2023

Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.

The mesolimbic dopamine system is implicated in signaling reward-related information as well as in actions that generate rewarding outcomes. These implications are commonly investigated in either pavlovian or operant reinforcement paradigms, where only the latter requires instrumental action. To parse contributions of reward- and action-related information to dopamine signals, we directly compared the two paradigms: male rats underwent either pavlovian or operant conditioning while dopamine release was measured in the nucleus accumbens, a brain region central for processing this information. Task conditions were identical with the exception of the operant-lever response requirement. Rats in both groups released the same quantity of dopamine at the onset of the reward-predictive cue. However, only the operant-conditioning group showed a subsequent, sustained plateau in dopamine concentration throughout the entire 5 s cue presentation (preceding the required action). This dopamine ramp was unaffected by probabilistic reward delivery, occurred exclusively before operant actions, and was not related to task performance or task acquisition as it persisted throughout the 2 week daily behavioral training. Instead, the ramp flexibly increased in duration with longer cue presentation, seemingly modulating the initial cue-onset-triggered dopamine release, that is, the reward prediction error (RPE) signal, as both signal amplitude and sustainment diminished when reward timing was made more predictable. Thus, our findings suggest that RPE and action components of dopamine release can be differentiated temporally into phasic and ramping/sustained signals, respectively, where the latter depends on the former and presumably reflects the anticipation or incentivization of appetitive action, conceptually akin to motivation.SIGNIFICANCE STATEMENT It is unclear whether the components of dopamine signals that are related to reward-associated information and reward-driven approach behavior can be separated. Most studies investigating the dopamine system use either pavlovian or operant conditioning, which both involve the delivery of reward and necessitate appetitive approach behavior. Thus, used exclusively, neither paradigm can disentangle the contributions of these components to dopamine release. However, by combining both paradigms in the same study, we find that anticipation of a reward-driven operant action induces a modulation of reward-prediction-associated dopamine release, producing so-called dopamine ramps. Therefore, our findings provide new insight into dopamine ramps and suggest that dopamine signals integrate reward and appetitive action in a temporally distinguishable, yet dependent, manner.

UI MeSH Term Description Entries
D008297 Male Males
D009042 Motivation Those factors which cause an organism to behave or act in either a goal-seeking or satisfying manner. They may be influenced by physiological drives or by external stimuli. Incentives,Disincentives,Expectations,Disincentive,Expectation,Incentive,Motivations
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D012054 Reinforcement, Psychology The strengthening of a conditioned response. Negative Reinforcement,Positive Reinforcement,Psychological Reinforcement,Reinforcement (Psychology),Negative Reinforcements,Positive Reinforcements,Psychological Reinforcements,Psychology Reinforcement,Psychology Reinforcements,Reinforcement, Negative,Reinforcement, Positive,Reinforcement, Psychological,Reinforcements (Psychology),Reinforcements, Negative,Reinforcements, Positive,Reinforcements, Psychological,Reinforcements, Psychology
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012201 Reward An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure. Rewards
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
December 1985, Journal of neurophysiology,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
April 1994, Behavioural brain research,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
February 1982, British journal of pharmacology,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
August 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
March 2002, Alcoholism, clinical and experimental research,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
November 2002, The European journal of neuroscience,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
May 2018, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
August 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
September 2003, Synapse (New York, N.Y.),
Jessica Goedhoop, and Tara Arbab, and Ingo Willuhn
March 2023, Biological psychiatry,
Copied contents to your clipboard!