Immunochemical studies on the interaction between synthetic glycoconjugates and alpha-L-fucosyl binding lectins. 1986

J Petryniak, and I J Goldstein

Evonymus europaea lectin precipitated with alpha DGal(1----3) beta DGal(1----4)beta DGlcNAc-bovine serum albumin (BSA), alpha LFuc(1----2)beta DGal(1----3)beta DGlcNAc-BSA, alpha LFuc(1----2)beta DGal(1----4)DGlcNAc, and alpha DGal(1----3)[alpha LFuc(1----2)]beta DGal-BSA. However, the lectin neither precipitated with alpha LFuc(1----2)-beta DGal-BSA, alpha DGal(1----3)beta DGal-BSA, or beta DGal(1----4)beta DGlcNAc-BSA nor agglutinated erythrocytes of Oh phenotype having multiple terminal beta DGal(1----4)beta DGlcNAc residues. These results indicate that the minimal structural requirement for glycoprotein precipitation or cell agglutination by the lectin includes any of the three trisaccharides (fucosylated or nonfucosylated) derived from the blood group B tetrasaccharide. The monosaccharides linked to the beta-D-galactosyl residue in the blood group B tetrasaccharide, namely, alpha-D-galactose, alpha-L-fucose, and N-acetyl-beta-D-glucosamine, participate almost equally in binding to the lectin in as much as removal of any one of these sugars reduces the inhibiting potency of the resulting trisaccharide. alpha LFuc(1----2)beta DGal(1----3)beta DGlcNAc-BSA (H type 1) and alpha LFuc(1----2)beta DGal(1----4)beta DGlcNAc (H type 2) were precipitated to the same extent. The E. europaea lectin neither precipitated alpha DGal(1----4)-beta DGal(1----4)beta DGlcNAc-BSA, Lea-BSA, Leb-BSA, or beta DGlcNAc(1----4)[alpha LFuc(1----6)]beta DGlcNAc-BSA nor agglutinated Oh,Lea and Oh,Leb erythrocytes, demonstrating that terminal D-galactose linked alpha-(1----4) to subterminal beta-D-galactose, or alpha-L-fucose linked to N-acetylglucosamine, prevents lectin binding. Corey-Pauling-Koltun molecular models, built on the basis of data from 1H NMR and hard-sphere exo-anomeric (HSEA) calculations provided by Lemieux and co-workers [Lemieux, R. U., Bock, K., Delbaere, L. T. J., Koto, S., & Rao, V. S. (1980) Can. J. Chem. 58, 631-653], show that these alpha-D-galactosyl and alpha-L-fucosyl groups act to sterically hinder lectin binding to these oligosaccharides; these observations also suggest that the lectin binds to the beta-side of these oligosaccharides. These sides, on both blood group H type 1 and blood group H type 2 oligosaccharides, provide a similar contour which can fully account for their equal reactivity with E. europaea lectin. The only difference found between Lotus and Ulex I lectins in precipitating ability was that only Lotus precipitated with beta DGlcNAc(1----4)[alpha LFuc(1----6)]beta DGlcNAc-BSA.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D005643 Fucose A six-member ring deoxysugar with the chemical formula C6H12O5. It lacks a hydroxyl group on the carbon at position 6 of the molecule. Deoxygalactose,alpha-Fucose,alpha Fucose
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006384 Hemagglutination The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL). Hemagglutinations
D000371 Agglutination The clumping together of suspended material resulting from the action of AGGLUTININS.
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf

Related Publications

J Petryniak, and I J Goldstein
January 1988, Dermatologische Monatschrift,
J Petryniak, and I J Goldstein
January 2022, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology,
J Petryniak, and I J Goldstein
November 1982, Molecular immunology,
J Petryniak, and I J Goldstein
September 1975, The Journal of biological chemistry,
J Petryniak, and I J Goldstein
October 1982, Revue francaise de transfusion et immuno-hematologie,
J Petryniak, and I J Goldstein
December 1988, Experimental parasitology,
J Petryniak, and I J Goldstein
December 1970, Journal of immunology (Baltimore, Md. : 1950),
J Petryniak, and I J Goldstein
August 2006, Current protein & peptide science,
Copied contents to your clipboard!