Evidence for self- and neighbor-mediated postactivation inhibition of locus coeruleus neurons. 1986

M Ennis, and G Aston-Jones

Activation of locus coeruleus (LC) neurons is typically followed by inhibition of impulse activity lasting hundreds of ms. Previous studies have implicated two possible mechanisms for this postactivation inhibition: collateral synaptic interactions among LC neurons; and spike-induced, calcium-activated potassium conductance in the soma-dendritic membrane of LC cells. In the present study, antidromic or sensory stimuli were presented at near-threshold intensities for activation of LC neurons. A special computer program accumulated activity for trials yielding driven responses separately from that for trials of identical stimuli during the same train that failed to evoke activity. We found significant inhibition of LC impulse activity for antidromic or sensory stimuli that failed to excite the recorded cell as well as for stimuli that activated the recorded cell. The former result precludes an essential role of intrinsic inhibitory membrane currents (e.g. calcium-activated potassium conductance) in generating postactivation inhibition. Administration of the alpha antagonist piperoxane reduced the magnitude of inhibition on both driven and non-driven trials. Our findings indicate that inhibition on non-driven trials appears to be a synaptically mediated phenomenon, perhaps reflecting norepinephrine released from neighboring LC neurons that are activated. Furthermore, our data support the presence of a spike-dependent mechanism that also contributes substantially to postactivation inhibition in these cells. Thus, the overall results indicate the presence of two intracoerulear mechanisms that mediate postactivation inhibition characteristic of noradrenergic LC neurons.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010883 Piperoxan A benzodioxane alpha-adrenergic blocking agent with considerable stimulatory action. It has been used to diagnose PHEOCHROMOCYTOMA and as an antihypertensive agent. Benodain,Benodaine,Forneau 933,Piperoxane
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

M Ennis, and G Aston-Jones
June 1980, Brain research,
M Ennis, and G Aston-Jones
November 1974, Brain research,
M Ennis, and G Aston-Jones
January 1987, NIDA research monograph,
M Ennis, and G Aston-Jones
August 1994, Neuroscience,
M Ennis, and G Aston-Jones
April 1996, Naunyn-Schmiedeberg's archives of pharmacology,
M Ennis, and G Aston-Jones
February 1996, Alcoholism, clinical and experimental research,
M Ennis, and G Aston-Jones
May 1996, Journal of neurophysiology,
M Ennis, and G Aston-Jones
January 1995, The Chinese journal of physiology,
Copied contents to your clipboard!