Characteristics of MK-801-induced locomotor sensitization. 2023

Gang Li, and Shijie Xu, and Ung Gu Kang
Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.

Repeated administration of drugs of abuse leads to progressively greater behavioral responses; this phenomenon is referred to as behavioral sensitization. MK-801 blocks the N-methyl-d-aspartate (NMDA) receptor and elicits behavioral sensitization. Ketamine and phencyclidine, are also NMDA antagonists and have well-documented abuse potential. This study investigated the characteristics of MK-801-induced behavioral sensitization and found that it induced sensitization rapidly; only five consecutive treatments were required. The optimal dose for robust sensitization was also identified, which corresponded to the typical doses of abused NMDA antagonists (i.e., between the doses inducing antidepressant and anesthetic effects). Following MK-801-induced behavioral sensitization, changes were observed in the expression and/or phosphorylation of NMDA receptor subunits. While the expression of early growth response protein 1, which serves as a marker of neuronal activation, was affected by MK-801 sensitization, extracellular signal-regulated kinase phosphorylation was not associated with MK-801 treatment.

UI MeSH Term Description Entries
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D016291 Dizocilpine Maleate A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects. Dizocilpine,MK-801,MK 801,MK801

Related Publications

Gang Li, and Shijie Xu, and Ung Gu Kang
January 1991, Polish journal of pharmacology and pharmacy,
Gang Li, and Shijie Xu, and Ung Gu Kang
April 2000, Brain research bulletin,
Gang Li, and Shijie Xu, and Ung Gu Kang
August 1994, Neurochemistry international,
Gang Li, and Shijie Xu, and Ung Gu Kang
October 1989, Physiology & behavior,
Gang Li, and Shijie Xu, and Ung Gu Kang
January 1993, Life sciences,
Gang Li, and Shijie Xu, and Ung Gu Kang
September 1994, Brain research,
Gang Li, and Shijie Xu, and Ung Gu Kang
September 1999, The European journal of neuroscience,
Gang Li, and Shijie Xu, and Ung Gu Kang
January 1991, Journal of neural transmission. General section,
Gang Li, and Shijie Xu, and Ung Gu Kang
April 1996, Synapse (New York, N.Y.),
Copied contents to your clipboard!