Liminal and supraliminal response characteristics of mechanoreceptive neurons in the cuneate nucleus of cat. 1986

A Pertovaara, and T Huopaniemi, and T Tukeva

The response characteristics of mechanoreceptive neurons (RA, SA, and PC) innervating the foot pad of cat were determined in the cuneate nucleus. The mechanical stimuli were single sinusoidal pulses of varying frequency (20, 60, 150, and 240 Hz), and vibratory trains of varying frequency (80 and 240 Hz) and duration (50, 100, and 400 ms). Thresholds and stimulus-response functions were determined with single pulses. Absolute thresholds (1 impulse/train), tuning thresholds (1 impulse/cycle), and atonal intervals (the range between absolute and tuning thresholds) were determined with vibratory stimulus trains. When tested with single pulses the thresholds resembled those of primary afferents in all unit populations. The stimulus-response function of PC units but not of all RA units were comparable to those of primary afferents. Noxious conditioning stimulation did not influence the thresholds of cuneate mechanoreceptors in the tested sample (N = 6). Mostly PC units were tested with vibratory trains. Absolute thresholds were not dependent on stimulus duration, which is a consistent finding with peripheral units. In contrast to peripheral units, the tuning thresholds in most PC units were elevated with increasing stimulus duration. The variability in the range of atonal intervals was much larger than in the periphery. Thus, it seems that both the type of the tactile signal and the type of the studied mechanoreceptive neuron are critical parameters in determining whether the response characteristics of neurons in the cuneate and in the periphery are identical or not.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory

Related Publications

A Pertovaara, and T Huopaniemi, and T Tukeva
April 1987, Journal of neurophysiology,
A Pertovaara, and T Huopaniemi, and T Tukeva
October 1983, Quarterly journal of experimental physiology (Cambridge, England),
A Pertovaara, and T Huopaniemi, and T Tukeva
July 1975, Experimental neurology,
A Pertovaara, and T Huopaniemi, and T Tukeva
June 1988, Neuroscience research,
A Pertovaara, and T Huopaniemi, and T Tukeva
August 1978, Klinische Monatsblatter fur Augenheilkunde,
A Pertovaara, and T Huopaniemi, and T Tukeva
November 1970, Revue de laryngologie - otologie - rhinologie,
A Pertovaara, and T Huopaniemi, and T Tukeva
January 1980, Journal fur Hirnforschung,
A Pertovaara, and T Huopaniemi, and T Tukeva
January 1987, Somatosensory research,
A Pertovaara, and T Huopaniemi, and T Tukeva
May 1969, International journal of neuropharmacology,
A Pertovaara, and T Huopaniemi, and T Tukeva
July 1977, The Journal of physiology,
Copied contents to your clipboard!