Myoglobin expression in L6 muscle cells. Role of differentiation and heme. 1986

S G Graber, and R C Woodworth

Analysis of myoglobin levels in L6 cells (derived from rat skeletal muscle) by radioimmunoassay shows that myoglobin is not synthesized until after the cells differentiate to form multinucleated myotubes. Thereafter, myoglobin accumulates in a linear fashion for up to 20 days, the longest time for which the cultures may be reliably maintained. Treatment of cultures with hemin increased myoglobin levels in a dose-dependent manner resulting in a 70% increase in myoglobin with 20 microM hemin. Succinyl acetone, a heme synthesis inhibitor, reduced myoglobin levels by 40% while simultaneous treatment with hemin restored myoglobin levels to control values. Treatment of cultures with a variety of Fe(III) chelates known to enhance both iron accumulation and ferritin synthesis in L6 cells had no effect on myoglobin levels. delta-Aminolevulinic acid also had no effect on myoglobin levels. None of the treatments had any effect on either the total soluble protein or DNA content of the cultures, and, therefore, the observed effects appear to be specific for myoglobin. These results suggest that myoglobin is expressed as a function of differentiation and that intracellular heme exerts a regulatory effect on myoglobin levels.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003561 Cytarabine A pyrimidine nucleoside analog that is used mainly in the treatment of leukemia, especially acute non-lymphoblastic leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle. It also has antiviral and immunosuppressant properties. (From Martindale, The Extra Pharmacopoeia, 30th ed, p472) Ara-C,Arabinofuranosylcytosine,Arabinosylcytosine,Cytosine Arabinoside,Aracytidine,Aracytine,Cytarabine Hydrochloride,Cytonal,Cytosar,Cytosar-U,beta-Ara C,Ara C,Arabinoside, Cytosine,Cytosar U,beta Ara C
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D006537 Heptanoates Salts and esters of the 7-carbon saturated monocarboxylic acid heptanoic acid. Enanthates

Related Publications

S G Graber, and R C Woodworth
March 1994, Canadian journal of physiology and pharmacology,
S G Graber, and R C Woodworth
April 1996, Biochimica et biophysica acta,
S G Graber, and R C Woodworth
March 1991, Biochemical and biophysical research communications,
S G Graber, and R C Woodworth
March 1994, Biochemistry and molecular biology international,
S G Graber, and R C Woodworth
February 1995, Molecular and cellular endocrinology,
S G Graber, and R C Woodworth
July 2010, Biochemistry,
S G Graber, and R C Woodworth
January 1980, Journal of cellular physiology,
S G Graber, and R C Woodworth
January 1976, Biochimie,
S G Graber, and R C Woodworth
May 2021, Physiological reports,
S G Graber, and R C Woodworth
September 2022, Cells,
Copied contents to your clipboard!