| D008054 |
Lipid Peroxides |
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. |
Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid |
|
| D010084 |
Oxidation-Reduction |
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). |
Redox,Oxidation Reduction |
|
| D004880 |
Ergothioneine |
A naturally occurring metabolite of HISTIDINE that has antioxidant properties. |
Thioneine,2-Thiol-L-histidine-betaine,2 Thiol L histidine betaine |
|
| D005609 |
Free Radicals |
Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. |
Free Radical |
|
| D000975 |
Antioxidants |
Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. |
Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous |
|
| D001205 |
Ascorbic Acid |
A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. |
Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium |
|
| D012643 |
Selenium |
An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. |
Selenium-80,Selenium 80 |
|
| D013880 |
Thioredoxin-Disulfide Reductase |
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5 |
Thioredoxin Reductase (NADPH),NADP-Thioredoxin Reductase,NADPH-Thioredoxin Reductase,Thioredoxin Reductase,NADP Thioredoxin Reductase,NADPH Thioredoxin Reductase,Reductase, NADP-Thioredoxin,Reductase, NADPH-Thioredoxin,Reductase, Thioredoxin,Reductase, Thioredoxin-Disulfide,Thioredoxin Disulfide Reductase |
|
| D014810 |
Vitamin E |
A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS. |
|
|
| D014815 |
Vitamins |
Organic substances that are required in small amounts for maintenance and growth, but which cannot be manufactured by the human body. |
Vitamin |
|