[Ultrastructure of capillary permeability in human brain tumors--4: Cerebral edema associated with meningiomas]. 1986

S Shibata, and M Fukushima, and K Mori

The cerebral edema, as judged by computed tomographic scan, associated with supratentorial meningiomas was assessed in 43 cases. No relationship to the occurrence or the degree of edema could be established with respect to meningioma location and histological type. The larger the meningioma, the more likely the presence of and the severity of cerebral edema. The materials were obtained from surgically removed specimens in 6 cases of meningiomas with and without associated cerebral edema, and tumor vessels were studied with conventional ultrathin section and freeze-fracture replica techniques. The characteristic findings of these tumor vessels were thinning of endothelium and many fenestrations, short and in fact open tight junctions. Tight junctions between endothelial cells were composed of one or two strands which appeared to be a discontinuous array of particles. The ultrastructural appearance of tumor vessels is similar to that seen in meningiomas with and without associated cerebral edema.

UI MeSH Term Description Entries
D008297 Male Males
D008577 Meningeal Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the meningeal coverings of the brain and spinal cord. Intracranial Meningeal Neoplasms,Spinal Meningeal Neoplasms,Benign Meningeal Neoplasms,Leptomeningeal Neoplasms,Malignant Meningeal Neoplasms,Meningeal Cancer,Meningeal Neoplasms, Benign,Meningeal Neoplasms, Intracranial,Meningeal Neoplasms, Malignant,Meningeal Tumors,Neoplasms, Leptomeningeal,Neoplasms, Meningeal,Benign Meningeal Neoplasm,Cancer, Meningeal,Cancers, Meningeal,Intracranial Meningeal Neoplasm,Leptomeningeal Neoplasm,Malignant Meningeal Neoplasm,Meningeal Cancers,Meningeal Neoplasm,Meningeal Neoplasm, Benign,Meningeal Neoplasm, Intracranial,Meningeal Neoplasm, Malignant,Meningeal Neoplasm, Spinal,Meningeal Neoplasms, Spinal,Meningeal Tumor,Neoplasm, Benign Meningeal,Neoplasm, Intracranial Meningeal,Neoplasm, Leptomeningeal,Neoplasm, Malignant Meningeal,Neoplasm, Meningeal,Neoplasm, Spinal Meningeal,Neoplasms, Benign Meningeal,Neoplasms, Intracranial Meningeal,Neoplasms, Malignant Meningeal,Neoplasms, Spinal Meningeal,Spinal Meningeal Neoplasm,Tumor, Meningeal,Tumors, Meningeal
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

S Shibata, and M Fukushima, and K Mori
January 1987, Surgical neurology,
S Shibata, and M Fukushima, and K Mori
June 1983, Neurosurgery,
S Shibata, and M Fukushima, and K Mori
July 1979, Journal of neurosurgery,
S Shibata, and M Fukushima, and K Mori
January 1989, Acta neuropathologica,
S Shibata, and M Fukushima, and K Mori
January 1976, Surgical forum,
S Shibata, and M Fukushima, and K Mori
February 1998, Journal of neuro-oncology,
S Shibata, and M Fukushima, and K Mori
August 1988, Neurosurgery,
S Shibata, and M Fukushima, and K Mori
January 1977, Acta neurologica Scandinavica. Supplementum,
S Shibata, and M Fukushima, and K Mori
June 1990, No shinkei geka. Neurological surgery,
S Shibata, and M Fukushima, and K Mori
May 1990, No shinkei geka. Neurological surgery,
Copied contents to your clipboard!