Mechanistic aspects of the inhibition of microsomal drug oxidation by primaquine. 1986

M Murray, and G C Farrell

The kinetics of inhibition of microsomal drug oxidation (as aminopyrine N-demethylase activity) by the antimalarial agent primaquine were found to be concentration-dependent. Lower concentrations of primaquine (0-40 microM) elicited slope-hyperbolic, intercept-hyperbolic noncompetitive (mixed) inhibition with an inhibitor equilibrium-dissociation constant (Ki) of 21 microM. On the other hand, primaquine concentrations greater than 40 microM elicited essentially simple competitive inhibition as judged from Lineweaver-Burk and Dixon analysis with appropriate replots (Ki = 23 microM). The coincident Ki values suggest that the same enzyme-inhibitor complex is involved in inhibition over all concentrations of primaquine tested. The apparent change in kinetics was accounted for in terms of a four-step interaction scheme involving a ternary enzyme-substrate-inhibitor complex that catalyses substrate oxidation at a slower rate than the binary enzyme-substrate complex. Competitive inhibition reflects the likelihood that the ternary complex does not form at all, presumably due to reduced accessibility of the active site to substrate. A good correlation was found between the Ki values for the inhibition of aminopyrine N-demethylase activity (21 or 23 microM) and the modulation of aminopyrine binding (26 microM) by primaquine. These findings suggest that the inhibition of aminopyrine N-demethylase activity by primaquine is mediated via an interaction with the oxidised form of cytochrome P-450. In addition, the apparent change in inhibition kinetics suggests a concentration-dependent change in the capacity of primaquine to modulate substrate binding to cytochrome P-450 as well as the formation of a P-450-aminopyrine-primaquine ternary complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011319 Primaquine An aminoquinoline that is given by mouth to produce a radical cure and prevent relapse of vivax and ovale malarias following treatment with a blood schizontocide. It has also been used to prevent transmission of falciparum malaria by those returning to areas where there is a potential for re-introduction of malaria. Adverse effects include anemias and GI disturbances. (From Martindale, The Extra Pharmacopeia, 30th ed, p404) Primacin,Primaquine Diphosphate,Primaquine Phosphate,Diphosphate, Primaquine,Phosphate, Primaquine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

M Murray, and G C Farrell
March 1987, Biokhimiia (Moscow, Russia),
M Murray, and G C Farrell
January 1973, Acta veterinaria Scandinavica,
M Murray, and G C Farrell
July 1973, Biochemical and biophysical research communications,
M Murray, and G C Farrell
January 2008, Water science and technology : a journal of the International Association on Water Pollution Research,
M Murray, and G C Farrell
November 1968, Biochemical pharmacology,
M Murray, and G C Farrell
May 1978, Biochemical pharmacology,
M Murray, and G C Farrell
June 2014, Bioorganic & medicinal chemistry letters,
M Murray, and G C Farrell
January 1973, Bulletin of environmental contamination and toxicology,
M Murray, and G C Farrell
August 1962, Biochemical pharmacology,
Copied contents to your clipboard!