Metabolism of an insecticide fipronil by soil fungus Cunninghamella elegans ATCC36112. 2023
In this study, the metabolic pathway of the phenylpyrazole insecticide fipronil in Cunninghamella elegans (C. elegans) was investigated. Approximately 92% of fipronil was removed within 5 days, and seven metabolites were accumulated simultaneously. The structures of the metabolites were completely or tentatively identified by GC-MS and 1H, 13C NMR. To determine the oxidative enzymes involved in metabolism, piperonyl butoxide (PB) and methimazole (MZ) were used, and the kinetic responses of fipronil and its metabolites were determined. PB strongly inhibited fipronil metabolism, while MZ weakly inhibited its metabolism. The results suggest that cytochrome P450 (CYP) and flavin-dependent monooxygenase (FMO) may participate in fipronil metabolism. Integrated metabolic pathways can be inferred from the control and inhibitor experiments. Several novel products from the fungal transformation of fipronil were identified, and similarities between C. elegans transformation and mammalian metabolism of fipronil were compared. Therefore, these results will help to gain insight into the fungal degradation of fipronil and potential applications in fipronil bioremediation. At present, microbial degradation of fipronil is the most promising approach and maintains environmental sustainability. In addition, the ability of C. elegans to mimic mammalian metabolism will assist in illustrating the metabolic fate of fipronil in mammalian hepatocytes and assess its toxicity and potential adverse effects.